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SCHEMAS EN GROUPES ET
IMMEUBLES DES GROUPES EXCEPTIONNELS
SUR UN CORPS LOCAL.
DEUXIEME PARTIE : LES GROUPES F; ET Eg

PAR WEE TECK GAN & Jiu-KANG YU

RESUME. — Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les
groupes exceptionnels des type F4 ou Eg sur un corps local. Nous décrivons chaque
construction concrétement en termes de réseaux : l'immeuble, les appartements, la
structure simpliciale, les schémas en groupes associés.

ABSTRACT. — We give an explicit Bruhat-Tits theory for the exceptional group
of type Fy or Eg over a local field. We describe every construct concretely in terms
of lattices: the building, the apartments, the simplicial structure, and the associated
group schemes.
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Introduction

In this sequel to our paper [9], we give an explicit description of the Bruhat-
Tits theory [4-8] for a split exceptional group G of type Fy or Eg over a local
field. More precisely, we give a natural and explicit model of the Bruhat-
Tits building B(G) as a topological space, describe its simplicial structure, the
structure of apartments and the associated parahoric group schemes in terms of
this model, and discuss the relations among buildings of different groups. We
refer the reader to the introduction of [9] (where the case G = G2 was handled)
for the goal and the history of this programme.

Many techniques used in this paper have already been developed in [9], or
can at least be implicitly found there. However, since the rank of G is very
small, a proof in [9] can occasionally be achieved by staring at the Coxeter
complex which is an apartment of B(Gz) (the figure in [9, §9]). Here it is
necessary to develop a more systematic approach. We now outline our general
strategy for studying the building of a simply connected simple group G over
a local field k.

Step 1. Choosing a geometric description of G. — Namely, we realize G
as Aut(V,T'), where V is a vector space over k and T = {t;} is a set of ten-
sors on V. Naturally, we prefer to make dim V' small and the description of T
economical.

Step 2. Embedding of buildings. — Let ¢ : G — GL(V) be the natural em-
bedding and show that this extends to a strong descent datum ¢, : B(G) —
B(GL(V)) of the Bruhat-Tits buildings. In general, there may be many choices
for ¢4, but in the cases treated in this paper, the choice of ¢, is essentially unique.

Step 8. Determination of the image of .. — This can be achieved using the
formalism in [9, §3]. Recall from the fundamental work [6] of Bruhat and
Tits that B(GL(V)) can be identified with the set of norms on V. Hence,
determining the image of ¢, amounts to describing B(G) as the set of norms
on V satisfying suitable conditions (expressed in terms of the tensors {¢;}),
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and this gives the desired model of B(G) as a topological space. We remark
that the key input for the formalism of [9, §3] is usually an arithmetic result.
In [9], this key arithmetic result is the fact that any two maximal orders in
the split octonion algebra are isomorphic. Here, the key input is a theorem of
Racine [16] that any two distinguished orders in the split simple exceptional
Jordan algebra are isomorphic.

Step 4. Making a list of graded lattice chains and their properties. — Recall
from [6] that the norms on V are in natural bijection with graded lattice chains
in V. For a “standard” closed chamber C on B(G) and each vertex v € C,
one can actually write down the norm «, = t.(v), and its associated graded
lattice chain (L,, ¢). The stabilizer in G(k) of the graded lattice chain (L,,¢) is
then equal to the stabilizer of the vertex v, and hence is a maximal parahoric
subgroup of G(k). In fact, since G is simply-connected in our case, the stabilizer
of any member of the lattice chain L, must already be the maximal parahoric
subgroup. This suggests that the graded lattice chain (L,,c) (and hence the
vertex v) can be reconstructed from one particular member L(v) of L,, as a
consequence of certain properties that L(v) possesses. Usually, we simply take

L) ={z €V :a,z)>0}.

By examining the graded lattice chain for each vertex v on C, we make such a
list P, of properties that L(v) satisfies. We distinguish two kinds of properties:
(i) the basic numerical invariants of L(v) and its associated graded lattice chain
(L.,c), such as the image of ¢ and the volumes of the members of L, (see
the beginning of §5 for the notion of volume); (ii) other properties, whose
description usually involve the tensors {¢;}.

Step 5. Lattice-theoretic description of the vertices. — By Step 4, we have an
injective map

{vertices of B(G) conjugate to v} — {lattices in V satisfying property P, },
z — L(z),

and we would like to show that it is surjective. This is achieved systematically
as follows.

> Given a lattice L C V satisfying P,, we reconstruct a graded lattice chain
(L., c) which corresponds to a norm ay, on V.

> Using the description of B(G) in Step 3, we check that ay, lies on B(G).
Hence, we can conjugate it to a point in the closed “standard” chamber
C using G(k), and we need to show that ar = v.

> If A is a “standard” apartment of B(G) containing C, we identify the
subset of A consisting of those norms « whose associated lattices L(«)
satisfy part (i) of P,. This is practicable and very useful since this subset
lies in a lattice M, in the affine space A. The point a;, thus lie on M, NC,
which is a finite set.
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> Using part (i) of P,, we show that v can be distinguished from other
points in M, N C.

This gives the desired description of the vertices of B(G) in terms of certain
lattices in V.

Step 6. Determination of the simplicial structure. — We would like to show
that if x and y are vertices, then x is incident to y if and only if there is an
inclusion relation, say L(y) C L(z). From the explicit list of graded lattice
chains made in Step 4, such an inclusion relation is easily seen to be necessary,
and it remains to show that it is also sufficient. After this is done, we would
have a purely lattice-theoretical description of the simplicial complex B(G).

To prove the expected characterization of incidence relation, we may assume
that « and y lie on the “standard” apartment A. If IV, is the number of vertices
of type y incident to x, and Ng’cy is the number of vertices z of type y such that
L(z) C L(z), then it suffices to show that N, = N;,. The number N, can be
computed using the theory of Coxeter complexes, whereas the number Ng’cy can
be found with the aid of the computer. Indeed, we first identify the bounded
set B, = {z € A: L(z) C L(z)}. The points in B, which satisfy part (i) of P,
lie in the finite set B, NM,. One can then use the computer to count the points
in B, N M, which satisfy P, and show that N, = N, .

Step 7. Construction of the Bruhat-Tits schemes. — Let x be a vertex
on B(G). We would like to describe its associated smooth model G, of G
over A (the ring of integers of k). In many cases, it can be shown that G,
is simply the schematic closure of G in Aut(L(z)). The proof, following the
paradigm laid out by Bruhat and Tits [5], relies on detailed analysis of the
smoothness of schematic closures of root subgroups. More generally, one can
construct the Bruhat-Tits scheme associated to a bounded convex set in an
apartment by taking a suitable schematic closure.

It is instructive to compare the above programme to the analogous problem
of determining the spherical building of G. In the latter case, we do not have the
key formalism developed in [9, §3] and used in Step 3. Also, the apartments are
simplicial spheres rather than affine spaces, and hence the geometric tricks in
Steps 5 and 6 are not available. Indeed, the remarkable paper [1] of Aschbacher,
which gives a description of the spherical building of Fy or Fg analogous to
the conclusions of Steps 5 and 6, involves very different techniques. Since the
spherical building of G (over the residue field of A) can be obtained as the link of
a hyperspecial vertex in the Bruhat-Tits building, it is natural to ask whether
our results can be used to recover Aschbacher’s description of the spherical
building of a split group of type Fy or Fjg, at least over a perfect field. We
do not pursue this here, but in this connection, it is worth pointing out that
this paper relies on [1] only in the proof of Proposition 5.3 where we have
used [1, (3.16)].
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1. Cubic Forms and Jordan Algebras

We begin with some generalities on cubic forms and Jordan algebras. Let A
be a (unital, commutative and associative) ring and J a projective A-module of
finite rank. Let N be a cubic form on J, and ¢ its associated symmetric trilinear
form. The cubic form N determines a tensor @ on J x J, characterized by the
requirement that:

> for fixed y, Ly : & — Q(x,y) is a linear form;

> for fixed z, @, : y — Q(z,y) is a quadratic form;

> N(z+y) - N(z) - N(y) = Qz,y) + Qy, z).
The 3-tuple (N, Q,t) satisfies

> the symmetric bilinear form associated to @, is t(x, —, —), i.e.

t(xvya y) =2 Q(ma y)7
> Qz,z) =3 N(z),
and is called a regular 3-form in [1].

Let e € J be such that N(e) = 1. Then we obtain a symmetric bilinear T
by setting

T({E, y) = Q(CE, e)Q(y, e) - t(ea x,y).

If this symmetric bilinear form is non-degenerate, i.e. induces an isomorphism
J — Homu(J, A), then we can define a quadratic map # on J by the formula

T(a%,y) = Q(y, ).
In that case, we set
zxy=(x+y¥—a? —y*
Following Jacobson [12, §2.4], the pair (N, e) is said to be admissible if:

> T is non-degenerate,
> the quadratic map # satisfies z## = N(x) - z.

Given an admissible pair (N, e), we have the following useful identities:

1) * =,
(2) T(xxy,z)=T(x,y x z) = t(z,y,2),
(3) exxz="T(e x)e—x.
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