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ON THE PYTHAGORAS NUMBERS OF

REAL ANALYTIC SET GERMS

by José F. Fernando & Jesús M. Ruiz

Abstract. — We show that (i) the Pythagoras number of a real analytic set germ
is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii)
every real analytic curve germ is contained in a real analytic surface germ with the
same Pythagoras number (or Pythagoras number 2 if the curve is Pythagorean). This
gives new examples and counterexamples concerning sums of squares and positive
semidefinite analytic function germs.

Résumé (Sur le nombre de Pythagore des germes d’ensembles analytiques réels)
Nous montrons : (i) que le nombre de Pythagore d’un germe d’ensemble analytique

réel est le plus grand des nombres de Pythagore des courbes qu’il contient et (ii)
que tout germe de courbe analytique réelle est contenu dans le germe d’une surface
analytique réelle ayant le même nombre de Pythagore (ou le nombre 2 si la courbe est
pythagoricienne). Cela fournit de nouveaux exemples et contre-exemples à propos des
sommes de carrés et des germes de fonctions analytiques semi-définies.

1. Preliminaries and statement of results

The Pythagoras number of a ring A is the smallest integer p(A) = p ≥ 1 such
that any sum of squares of A is a sum of p squares, and p(A) = +∞ if such an
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integer does not exist. This invariant appeals specialists from many different
areas, and has a very interesting behaviour in geometric cases; we refer the
reader to [4], [7], [21] and [22]. Here we are interested in the important case of
real analytic germs, which have been extensively studied in [6], [17], [18], [11],
[20], [12], [8], [9], [10].

Let X ⊂ R
n be a real analytic set germ and O(X) its ring of analytic

function germs. Since O(Rn) is the ring R{x} of convergent power series in
x = (x1, . . . , xn), we have O(X) = R{x}/J (X), where J (X) stands for the
ideal of analytic function germs vanishing onX . We will discuss the Pythagoras
number p[X ] = p(A) of the ring A = O(X).

Clearly, if we have another real analytic set germ Y ⊂ X , then J (Y ) ⊃ J (X)
and the canonical surjection O(X) → O(Y ) gives immediately the inequality
p[Y ] ≤ p[X ]. This easy remark can be sharpened as follows:

Theorem 1.1. — The Pythagoras number p[X ] of a real analytic set germ X
is the supremum of the Pythagoras numbers p[Y ] of all real analytic curve

germs Y ⊂ X.

If the germ X is irreducible, the supremum can be restricted to irreducible

curve germs Y . In general this is not possible:

Example 1.2. — The planar curve germ Y : (x2 − y3)(x2 + y3) = 0
has Pythagoras number 2, while its irreducible components Y1 : x2 − y3 = 0
and Y2 : x2 + y3 = 0 have both Pythagoras number 1.

Indeed, since Y ⊂ R
2, we have p[Y ] ≤ 2, and looking at the initial forms

of the series involved, one easily checks that x2 + y2 is not a square mod
(x2−y3)(x2 +y3). On the other hand, O(Yi) ≡ R{t2, t3}, and this ring consists
of all power series without the degree 1 monomial; it follows readily that in this
ring every sum of squares has always a square root.

Note that if X itself is a curve germ, Theorem 1.1 is trivial. On the other
hand, in the irreducible case the result is quite more precise, as it takes the
form of a curve selection lemma:

Theorem 1.3. — Let X be an irreducible real analytic set germ of dimen-

sion ≥ 2, and Z ⊂ X a semianalytic germ with dim(Z) = dim(X). Then p[X ]
is the supremum of the Pythagoras numbers p[Y ] of all irreducible curve

germs Y such that Y \ {0} ⊂ Z.

The condition Y \ {0} ⊂ Z means that Z contains both open half-branches
of Y , which improves the more typical one half-branch selection; this is impor-
tant for applications (see [2, VII.4,5]). Summing up, there are two possibilities:

(i) If dim(X) = 2, then p[X ] = p < +∞ (see [8]), and we can find a curve
germ Y ⊂ X , with p[Y ] = p. As said above, if X is irreducible, the curve germ
Y can be chosen irreducible and anywhere in X .
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(ii) If dim(X) ≥ 3, then p[X ] = +∞ (see [9]), and what happens is that X
contains anywhere irreducible curve germs with Pythagoras number arbitrarily
large (note that in this case we can always supposeX irreducible). For instance,
in X = R

3 we can find monomial curve germs Y : xi = tmi with p[Y ] → +∞.

In this statements, anywhere means in any semianalytic set germ of maximal

dimension. We will prove this in Section 2.

In case (ii) we can also find irreducible surface germs X ′ ⊂ X with arbi-
trarily large Pythagoras number p[X ′]. For that, we first find irreducible curve
germs Yk ⊂ X not contained in the singular locus of X such that p[Yk] → +∞;
then, by the condition on the singular locus, X contains some irreducible sur-
face germ Xk ⊃ Yk (see [2, VII.5.1,VIII.2.5]), so that p[Xk] ≥ p[Yk].

After these results it is only natural to seek for a converse, namely:

Theorem 1.4. — Let Y be a curve germ. Then there exist a pure surface

germ X ⊃ Y with

p[X ] =

{
2 if p[Y ] = 1,

p[Y ] otherwise.

We call a set germ pure if its irreducible components have all the same
dimension. In fact, if Y is irreducible, X can be found irreducible too. The
statement above is the best possible one, since surface germs have Pythagoras
number ≥ 2.

The proof of Theorem 1.4 is developed in Section 3. It is interesting
to remark here that for irreducible Y , the surface X one obtains is bira-

tional to R
2, that is, it has a parametrization x = x(s, t) that induces an

isomorphism M(X) → R({s, t}) between the fields of meromorphic func-
tion germs. In particular, although the Pythagoras number p[X ] of the
domain O(X) is arbitrary, the Pythagoras number p(X) of its field of frac-
tions M(X) is always 2: p(X) = p(M(X)) = p(R({s, t})) = 2

The construction used to prove Theorem 1.4 can be extended to obtain the
following relative version of the result: If a surface germ X has some irreducible

components of dimension 1, then those components embed in a surface germ X ′

so that p[X ∪ X ′] = p[X ]. The proof of this technical generalization is most
predictable, and will not be detailed here.

We also notice that the surfaceX may well need bigger embedding dimension
than the curve Y :

Example 1.5. — Consider the curve germ Y ⊂ R
3 given by

Y : x = t5, y = t11, z = t18.

The Pythagoras number of this curve germ is p[Y ] = 2, as one can see af-
ter some (not completely straightforward) work using some ideas in [17], [18]
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and [11]. Consequently, by Theorem 1.4, Y is contained in some surface germX
with p[X ] = 2, but no such a surface germ can be embedded in R

3.

This can be proven by way of contradiction, as we sketch next. Suppose
X ⊂ R

3, defined by an equation f(x, y, z) = 0 which must have order 2 (oth-
erwise, x2 + y2 + z2 would not be a sum of two squares mod f). As f belongs
to J (Y ) = (z2 − yx5, zy2 − x8, y3 − x3z), we can take

f = z2 − yx5 + 2a(zy2 − x8) + 2b(y3 − x3z),

with a, b ∈ R{x, y}. By the Weiertrass Preparation Theorem, we factorize
f = UP , where

U ∈ R{x, y, z} is a unit, and P = z2 + 2B(x, y)z + C(x, y).

A small computation gives

U(x, y, 0)C = f(x, y, 0) ∈ (y3, x6),

2U(x, y, 0)B +
∂U

∂z
(x, y, 0)C =

∂f

∂z
(x, y, 0) ∈ (y2, x3)

and after the change of coordinates v = z+B, f becomes v2 +C−B2. Since U
is a unit, U(x, y, 0) is a unit too, and we deduce

C ∈ (y3, x6) ⊂ (y, x2)3, B2 ∈ (y2, x6)2 ⊂ (y, x2)3.

Thus our surface germ is now X : v2 = F, where F = B2 − C ∈ (y, x2)3. This
surface must be equivalent to some surface germ in the list given in [10], but
standard singularity theory (see [14, 9.2.12–14]) tells that this is not possible.

Thus, we can only expect a mild control on the embedding dimension of X .
In fact, a careful analysis of the construction in Section 3 will give some bound
for that embedding dimension in terms of numerical invariants of Y . For in-
stance, if Y is the curve of the example above, the embedding dimension of X
can be lowered to 18!

An interesting consequence of Theorem 1.4 is this:

Corollary 1.6. — Every integer p ≥ 2 is the Pythagoras number of a real

analytic surface germ.

Proof. — Indeed, p is the Pythagoras number of some curve germ by [17], and
then 1.4 applies.

We can look more closely at the construction of these surface germs, which
give new examples concerning the problem whether every positive semidefinite
analytic function germ is a sum of squares of analytic function germs (in short,
psd = sos). In fact, given a curve Y with Pythagoras number p ≥ 2, the
surface X with p[X ] = p lies in a sandwich Y ≡ Y × {0} ⊂ X ⊂ Y × R

d

for suitable d ≥ 1. Thus:
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(1) Any positive semidefinite function germ on Y , extends to a positive
semidefinite function germ on X , and

(2) Every sum of squares on X restricts to a sum of squares on Y .

Consequently, since psd 6= sos for Y , we conclude psd 6= sos forX . In particular,
choosing Y with p[Y ] = 2, we produce a full range of new examples of real

analytic surface germs X with minimal Pythagoras number and psd 6= sos.
These examples include those in [10, Ex.1.5], which correspond to the simplest
possible Y ’s: the planar curves xn = yn+1.

2. Proof of Theorems 1.1 and 1.3

The key result to these theorems is a curve selection lemma with large tangent

space, which refines [3, Prop. 1] in various ways to fit our situation. We present a
different proof which simplifies that of [3] and gives the generalization needed
here:

Lemma 2.1. — Let X ⊂ R
n be a real analytic irreducible germ of dimen-

sion ≥ 2, and Z ⊂ X a semianalytic germ with dim(Z) = dim(X). Then,

for every integer k ≥ 1 there is a real analytic curve germ Y ⊂ X such that:

Y \ {0} ⊂ Z and J (Y ) ⊂ J (X) + (x1, . . . , xn)k.

Proof. — For the proof, we can suppose

Z = {f1 > 0, . . . , fr > 0} ∩X,
where f1, . . . , fr ∈ R{x}. Since X is irreducible, the ring A = O(X) =
R{x}/J (X) is a domain, whose quotient field we denote by K. By the hy-
pothesis on the dimension of Z, there is a total ordering α of K such that
f1(α) > 0, . . . , fr(α) > 0. Write (x) = (x1, . . . , xn) and let m = (x) mod J (X)
be the maximal ideal of A. We consider the convex hull V of R in K with
respect to α (see [2, II.3.6]): V is a valuation ring of K with residue field R,
and since A is henselian, V dominates A. Now, by Hironaka’s resolution of
singularities (see [13]), there is a finitely generated regular A-algebra A′ such
that f = f1 · · · fr has only normal crossings in A′. Furthermore, A′ is proper
over A, that is, if a valuation ring of K contains A, then it contains A′. Conse-
quently, our valuation ring V dominates some localization B of A′; let n denote
the maximal ideal of B. By Zariski’s Subspace Theorem (see [1, 10.6]), A is a
subspace of B (with respect to the adic topologies); consequently:

(2.1.1) There is an integer ` ≥ 1 such that n` ∩A ⊂ mk.

Note also that, since the residue fields of A and V are both R, the residue
field of B is also R. By the normal crossings condition on f , we can write

fj = ujy
mj1

1 · · · ymjd

d ,
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