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FREE DECAY OF SOLUTIONS TO WAVE EQUATIONS

ON A CURVED BACKGROUND

by Serge Alinhac

Abstract. — We investigate for which metric g (close to the standard metric g0) the
solutions of the corresponding d’Alembertian behave like free solutions of the standard
wave equation. We give rather weak (i.e., non integrable) decay conditions on g − g0;

in particular, g − g0 decays like t
− 1

2
−ε along wave cones.

Résumé (Décroissance des solutions des équations d’ondes sur un arrière-plan courbe)
Nous étudions pour quelles métriques g (proches de la métrique standard g0) les

solutions du d’Alembertien pour g se comportent comme des solutions libres de l’équa-
tion des ondes standard. Nous proposons des conditions de décroissance assez faibles

(i.e., non intégrables) sur g − g0 ; en particulier, g − g0 décrôıt comme t
− 1

2
−ε le long

des cônes d’onde.

Introduction

We consider the wave equation Lg associated with a given Lorentzian met-
ric g on Rt × R

3
x. Our aim is to answer the question: under which conditions

on g do the solutions of Lgu = 0 behave like free solutions of the standard
wave equation L0 ? One can of course use the energy method of Klainerman,
commuting the standard “Z”-fields with the equation, and putting on g strong
enough decay assumptions (relative to the standard metric) to obtain finally a
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control of |∂Zku|L2 , which implies in turn, thanks to Klainerman’s inequality,
the behavior

|∂u| ≤ C
(
1 +

∣∣t − |x|
∣∣)− 1

2

(
1 + t + |x|

)−1
.

What we have in mind is to impose as little decay as possible on g, getting
close to what seems to be a critical level. The framework we choose here is
one where a “1D-situation” occurs, in the sense of [2]. This means that we
can prove for Lg an energy inequality in which three special derivatives G (the
“good” derivatives) are better controlled than in the standard L∞

t L2
x-norm:

only one “bad” derivative is left. This idea has been used already in [1], where
we study the equation

∂2
t u − c2(u)∆u = 0.

This later work splits essentially into a linear part, where we study the opera-
tor ∂2

t −c2(u)∆, and a nonlinear part which is a bootstrap on certain properties
of u. Because of the very special form of the equation, it seemed to us that the
treatment of the linear problem involved many miracles which were may be not
likely to occur again in a more general case. Also, in this nonlinear problem,
u was likely to decay roughly as t−1, implying a similar decay for derivatives
of c(u). The general analysis below shows that one can relax this assumption

down to an almost t−
1

2 decay of the metric (relative to the flat metric).
A more precise discussion of these issues will be offered in section 1.4 af-

ter our notations, assumptions and results have been stated. Let us just say
here that the whole paper is strongly inspired by the geometric techniques of
Christodoulou and Klainerman, developed in [4], [3] and also by related work
of Klainerman and Sideris [10], Klainerman and Nicolò [8] and Klainerman
and Rodnianski [9].

1. Framework and main result

1.1. The general framework. — We work in Rt × R
3
x where

x0 = t, x = (x1, x2, x3), ∂α =
∂

∂xα
, r = |x|, rω = x, σ = 〈r − t〉,

where here and below we use

〈s〉 = (1 + s2)
1

2 .

As usual, the greek indices will run from 0 to 3, while the latin one will run
only from 1 to 3.

We consider a metric g = g0 + γ which is a (small) perturbation of the
standard Minkowski metric g0 defined by

(g0)00 = −1, (g0)ii = 1, (g0)0i = 0.

The inverse matrix to gαβ is denoted by gαβ. We will write

〈X, Y 〉 = g(X, Y )
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and denote by D the connexion associated to g. Recall that for a function a,
the gradient of a and the Hessian of a are defined by

∇a = gαβ(∂αa)∂β , ∇2a(X, Y ) = XY a − (DXY )a.

We denote by L0 the d’Alembertian associated to g0 (the standard wave equa-
tion), and by

Lgu = gαβ∇2uαβ

the d’Alembertian associated to g. We assume

g00 = −1, g0i(x, t)ωi = 0,

and define

T = −∇t = ∂t − g0i∂i, N =
∇r

|∇r|
, L = T + N, L1 = T − N.

Note that our assumption g0iωi = 0 allows us to express T − ∂t and N − c∂r

using the standard rotations, a fact which will be important later on. As shown
in [2], we have the easy properties

〈T, T 〉 = −1, T (r) = 0 = 〈N, T 〉, DT T = 0,

〈L, L〉 = 0 = 〈L1, L1〉, 〈L, L1〉 = −2.

We use the frame

e1, e2, L1, L,

where the ei form an orthonormal basis on the standard spheres t = t0, r = r0.

Three quantities play an important role in the following:

• the radial sound speed c defined by

c = |∇r|, c2 = gijωiωj ,

• the second fundamental form k of the hypersurfaces t = Constant,

k(X, Y ) = 〈DXT, Y 〉, kij =
1

2
g0α(∂igαj + ∂jgαi − ∂αgij),

• the second fundamental form of the standard spheres t = t0, r = r0

in {t = t0}

θ(e, e′) = 〈DeN, e′〉,

where e and e′ are tangent to the sphere.

We denote by k and θ̄ the traces of theses forms

k = k(N, N) + k(e1, e1) + k(e2, e2), θ̄ = θ(e1, e1) + θ(e2, e2).

In the frame (ei, L1, L), the d’Alembertian Lg is

Lg = −LL1 + ∆S − kT + (kNN + θ̄)N +
∑

i=1,2

(
2kiN −

ei(c)

c

)
ei,
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where ∆S is the Laplacian on the standard spheres corresponding to the re-
striction of g to these spheres. Finally, we recall the definitions of the standard
fields

Ri = (x ∧ ∂)i, S = t∂t + r∂r .

1.2. Assumptions on the metric. — The behavior of the metric and of
the solution will be discussed in terms of the two parameters

σ =
(
1 + (r − t)2

) 1

2 , 1 + t + r.

Because of this, we distinguish three zones I, II and III, respectively defined by

r ≤ 1

2
(1 + t), 1

2
(1 + t) ≤ r ≤ 3

2
(1 + t), r ≥ 3

2
(1 + t),

which we also call “interior”, “middle zone” and “exterior”. The reason for
using these parameters is that in nonlinear applications, the coefficients γ will
be functions of u or ∂u, and their behavior has to be discussed in the same
terms as the behavior of u.

The time decay of certain quantities will be measured using a smooth in-
creasing φ = φ(t) > 0 such that

(1.2)a φ′ > 0, (1 + t)φ′ ∈ S0,
φ′′

φ′
∈ S−1,

(1.2)b ∀ε > 0, φ(t) ≤ Cε + ε log(1 + t).

Here, Sm denotes symbols of order m, that is, smooth functions s(t) satisfying
∣∣s(k)(t)

∣∣ ≤ Ck〈t〉
m−k, k ∈ N.

In [1], we take φ(t) = ε log(1 + t). The “free case” corresponds to the choice φ′

integrable. It seemed however relevant to us to incorporate in the present paper
certain decay patterns which played in important role in [1].

There are three groups of assumptions on the metric:

• General low decay. — For some µ > 1
2 , and all k,

|Γkγαβ| ≤ γ0 σ
1

2 (1 + t + r)−µ, |Γk∂γαβ| ≤ γ0 σ− 1

2 (1 + t + r)−µ.

Here, Γk means any product of k fields Γ among Ri, S or σµ∂α. In zones I
or III, it is enough to take Γ among Ri, S or ∂α.

• Special high decay. — For the quantities k, θ̄ and c, we have in the middle

zone the high decay

|Γkk| ≤ γ0 σ− 1

2 (1 + t)−1, |Γkθ̄| ≤ γ0(1 + t)−1,

|1 − c| ≤ γ0 σ
1

2 φ′, |∂c| ≤ γ0 σ− 1

2 φ′,

|Γk+1c| ≤ γ0 σ
1

2 φ′eCφ, |Γk∂c| ≤ γ0 σ− 1

2 φ′eCφ.

• Technical interior assumption. — In the interior, we assume r|θ̄| ≤ C.
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Remark. — One can observe in the assumptions above that whenever a quan-

tity is bounded by ∗σ
1

2 , its gradient is bounded by ∗σ− 1

2 . This “homogeneity”
is important and occurs naturally in the context of nonlinear equations, where

energy methods and Klainerman’s formula give no better than a σ− 1

2 control
of ∂u (see Introduction); this does not allow in general anything better than u

controlled by σ
1

2 . We postpone to section 1.4 the discussion of these assump-
tions.

1.3. Main result. — Let u be the solution of the Cauchy problem

Lgu = 0, u(x, 0) = u0(x), (∂tu)(x, 0) = u1(x).

Assume the following decay on the smooth real functions u0, u1

∀α, ∀β, |α| ≤ |β|, xα∂β
xui ∈ L2, i = 1, 2.

We have then the following “free” decay property.

Theorem. — For γ0 small enough and r ≥ 1
2 (1 + t), we have

|∂u| ≤ Cσ− 1

2 (1 + t + r)−1eCφ

for some C > 0.

Remark 1. — The “free decay” result annouced in the title is obtained by
choosing φ′ integrable, in which case φ is bounded and so is eCφ.

Remark 2. — There is little doubt that the same estimate holds also
for ∂Zku, where Z = Ri, Z = S or Z = ∂α. This can be proved using the
“hat-calculus” of section 9; we dropped the proof of these additionnal estimates
to make the paper a little lighter, if possible.

We did not attempt here to give a poor estimate in the interior zone; getting
a good one there (without using the hyperbolic rotations) is a real difficulty,
which has been completely skipped in [8] for instance, where the authors work
only outside the interior zone. One can may be hope for some extension of
the inequality proved in [6] for the wave equation, which displays an improved
interior behavior of ∂u.

1.4. Discussion of the method of the proof, of the assumptions, and

plan of the paper. — a) The method of proof uses energy inequalities for Lg.
In the litterature, there are essentially two approaches:

i) One can use a conformal energy inequality (see [5]), which gives a control
of Riu, Su and Hiu, with Hi = t∂i + xi∂t. This is the approach of [7], [8]
and [9]. This is enough to get some decay on u, but not quite the precise t−1

decay we want (see [7]).
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