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KÄHLER MANIFOLDS WITH

SPLIT TANGENT BUNDLE

by Marco Brunella, Jorge Vitório Pereira

& Frédéric Touzet

Abstract. — This paper is concerned with compact Kähler manifolds whose tangent
bundle splits as a sum of subbundles. In particular, it is shown that if the tangent
bundle is a sum of line bundles, then the manifold is uniformised by a product of
curves. The methods are taken from the theory of foliations of (co)dimension 1.

Résumé (Variétés kähleriennes à fibré tangent scindé). — On étudie dans cet article
les variétés kählériennes compactes dont le fibré tangent se décompose en somme di-
recte de sous-fibrés. En particulier, on montre que si le fibré tangent se décompose en
somme directe de sous-fibrés en droites, alors la variété est uniformisée par un produit
de courbes. Les méthodes sont issues de la théorie des feuilletages de (co)dimension 1.

1. Introduction

We study in this paper compact Kähler manifolds whose tangent bundle
splits as a sum of two or more subbundles. The basic result that we prove is
the following theorem.
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Theorem 1.1. — Let M be a compact connected Kähler manifold. Suppose
that its tangent bundle TM splits as D ⊕ L, where D ⊂ TM is a subbundle of
codimension 1 and L ⊂ TM is a subbundle of dimension 1. Then:

(i) If D is integrable then M̃ , the universal covering of M , splits as Ñ × E,
where E is a connected simply connected curve (the unit disc D, the affine

line C or the projective line P). This splitting of M̃ is compatible with the

splitting of TM , in the sense that T Ñ ⊂ TM̃ is the pull-back of D and

TE ⊂ TM̃ is the pull-back of L.
(ii) If D is not integrable then L is tangent to the fibres of a P-bundle.

This result will be the main ingredient in the proof of the following one. See
also Section 4 for a more general statement.

Theorem 1.2. — Let M be a compact connected Kähler manifold whose tan-
gent bundle splits as a sum of line subbundles:

TM = L1 ⊕ · · · ⊕ Ln.

Then the universal covering M̃ is isomorphic to a product of curves

M̃ = P
r × C

s × D
t

for suitable integers r, s, t, r + s + t = n. Moreover, if all the codimension 1
subbundles L1 ⊕ · · ·⊕Lj−1 ⊕Lj+1 ⊕ · · ·⊕Ln, j = 1, . . . , n, are integrable, then

the above splitting of M̃ is compatible with the one of TM .

The problem of relating splitting properties of the tangent bundle of a com-
pact complex manifold with splitting properties of the universal covering has
been recently studied by Beauville [2], Druel [9], Campana-Peternell [7]. The
point of view of these papers consists in analysing the interplay between split-
ting of the tangent bundle and some known differential-geometric or algebraic-
geometric properties of the manifold. For instance, in [2] one makes use of
Kähler-Einstein metrics, whereas in [9] and [7] a main tool is the geometry of
rational curves on a projective variety (Mori theory).

Our point of view is completely independent on the geometry of the under-
lying manifold. On the contrary, it is completely dependent on the geometry of
the foliations by curves generated by one dimensional subbundles of the tangent
bundle. In some sense, we replace the Mori theory used in [7] with the “foli-
ated”Mori theory funded by Miyaoka [3]. But also we like to work on compact
Kähler manifolds which are possibly nonprojective, so that the algebraic point
of view of [3] must be replaced by the more analytic one of [5] and [6], which
moreover gives some useful metric-type information. Other simple but essen-
tial tools are the integrability criterion for codimension 1 distributions of [8]
and the construction of holonomy invariant metrics for codimension 1 foliations
of [4].
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Roughly speaking, in the setting of Theorem 1.1 our method consists in
constructing a special metric on the line bundle L. Then, in the setting of
Theorem 1.2 and still roughly speaking, we shall obtain a special metric on M
by summing the special metrics on the line bundles Lj , and this special metric
on M will give the desired uniformisation. In this perspective, Theorem 1.2
should be compared with Simpson’s uniformisation theorem [13, Cor. 9.7] (see
also [2]), even if our construction of special metrics is completely different.
In fact, we already have by free a special metric, given by the leafwise Poincaré
metric, and we have just to verify that it is the good one.

2. One dimensional foliations with a transverse distribution

Let M be a compact connected Kähler manifold. Suppose that the tangent
bundle TM splits as a sum of a one dimensional subbundle L and a codimen-
sion 1 subbundle D:

TM = D ⊕ L.

The line subbundle L is tangent to a holomorphic one dimensional foliation L.
Each leaf of L is uniformized either by P (rational leaf) or by C (parabolic
leaf) or by D (hyperbolic leaf). By a well known argument (Reeb stability plus
compactness of the cycles space [11]), if some leaf is rational then every leaf
is rational, and L is a locally trivial P-bundle over some compact connected
Kähler manifold N , dimN = dim M − 1.

In this case, the transverse distribution D may be integrable or not. If it is
integrable, then foliation D generated by D can be described as a suspension

of a representation of π1(N) into Aut(P), see [10, Ch. I]. It follows that M̃ , the

universal covering of M , splits as Ñ × P, the splitting being compatible with
the splitting of TM .

If D is not integrable and M is projective, a more subtle argument [7, §2]

shows that M̃ still splits as Ñ ×P (but now, of course, this splitting is no more
compatible with TM = D ⊕ L). Probably the same holds also in the Kähler
nonprojective case, but we don’t know a proof.

Let us now turn to the more interesting case in which no leaf is rational. We
shall distinguish two different possibilities:

(a) There is a hyperbolic leaf;
(b) Every leaf is parabolic.

The following Proposition completes the proof of Theorem 1.1.

Proposition 2.1. — In both cases (a) and (b) the distribution D is integrable,
and generates a codimension 1 foliation D. The holonomy of this foliation
preserves a transverse hermitian metric of constant curvature κ, with κ = −1

in case (a) and κ = 0 in case (b). The universal covering M̃ splits as Ñ × E,
compatibly with TM = D ⊕ L, and E = D in case (a) or E = C in case (b).
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2.1. The hyperbolic case. — If some leaf of L is hyperbolic, we shall rely
on the main result of [5]: the leafwise Poincaré metric on L induces on T ∗L
(= L∗) a singular hermitian metric whose curvature is a closed positive current.

Let us fix an open covering {Uj} of M , with holomorphic vector fields
vj ∈ H0(Uj , ΘM ) generating L and holomorphic 1-forms (a priori, not nec-
essarily integrable) ωj ∈ H0(Uj , Ω

1
M ) generating D. We may suppose, by the

transversality condition, that ivj
ωj ≡ 1. On overlapping charts we therefore

have

vi = gijvj , ωi = g−1
ij ωj

where gij : Ui ∩ Uj → C∗ are holomorphic functions forming a cocycle which
defines the line bundle L∗.

For every j, set

hj = log ‖vj‖2
Poin

where ‖vj(z)‖Poin is the norm of vj(z) with respect to the Poincaré metric on
the leaf of L through z. The result of [5] recalled above says that hj is a plurisub-
harmonic function. Recall also that, by definition, the Poincaré “metric” on a
parabolic leaf is identically zero. Thus hj may have poles, corresponding to the
trace of parabolic leaves on Uj .

The arguments are very close to [4] and [8]. In fact, the integrability of D
follows from [8] (L∗ is the conormal bundle of D, and it is pseudoeffective), and
the existence of a transverse metric invariant by the holonomy follows from [4,
§§6–7]. But let us give anyway some detail for the sake of completeness and
reader’s convenience.

From vi = gijvj we deduce that hi − hj = log |gij |2, and from ωi = g−1
ij ωj

we see that the (1, 1)-form locally defined by

η =
√
−1ehj ωj ∧ ωj

is indeed a well defined global positive (1, 1)-form (with L∞
loc-coefficients) on M .

We may compute
√
−1∂∂η, as a current. It turns out that it is a positive

current.
Indeed, by the usual decomposition properties of positive forms, by η ∈ L∞

loc,
and by Fubini’s theorem, it is sufficient to verify that for every local embedding
ι : D2 → M the current

√
−1∂∂(ι∗η) is positive (that is, a positive measure

on D2). If ι(D2) is tangent to D then ι∗η ≡ 0. If ι(D2) is not tangent to D then
the trace of D on ι(D2) defines a foliation outside a discrete subset Γ ⊂ D2.
Thus, ι∗ωj outside Γ can be written, in suitable local coordinates (z, w), as f dz,

for some holomorphic function f . Consequently, ι∗η = eh|f |2
√
−1dz ∧ dz and

√
−1∂∂(ι∗η) =

√
−1∂∂(eh+log |f |2) ∧

√
−1dz ∧ dz

which is positive because h + log |f |2 is plurisubharmonic.
This gives the positivity of

√
−1∂∂(ι∗η) on D2 \ Γ. To obtain the positivity

on the whole D2 we may simply use the extension theorem of [1]. The form ι∗η
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has bounded coefficients, so that if Θ is a Kähler form on D2 then ι∗η − cΘ
is a negative current for c � 0, whereas

√
−1∂∂(ι∗η − cΘ) =

√
−1∂∂(ι∗η)

is positive outside Γ. By [1], this last one is positive on the full D2. Whence

the positivity of
√
−1∂∂η on M .

By Stokes Theorem, the exact positive measure
√
−1∂∂η∧Θn−2 (Θ is now a

Kähler form on M , and n = dimM) must be identically zero, so that
√
−1∂∂η

is also identically zero: √
−1∂∂η ≡ 0.

Looking again at the local restriction ι∗η, ι : D2 → M , we obtain that the

function eh+log |f |2 is harmonic in the w-variable. Because h + log |f |2 is w-
subharmonic, the only possibility is that h + log |f |2 is w-constant: the expo-
nential of a nonconstant subharmonic function is strictly subharmonic. This
implies that ι∗η is not only ∂∂-closed, but also d-closed. By varying the em-
bedding ι : D2 → M , we obtain:

dη ≡ 0.

This means two things:

(i) the distribution D = ker η is integrable, and hence generates a codimen-
sion 1 foliation D;

(ii) on the transversals to D, η induces a measure invariant by the holonomy.

Remark that all of this uses only the fact that L∗, the conormal bundle of D,
is pseudoeffective, i.e., the functions hj are plurisubharmonic. But, by the
normalisation ivj

ωj ≡ 1 and the definition of hj , we see that the restriction of η
to the leaves of L is nothing but than the area form of the hyperbolic metric on
those leaves. Therefore, the holonomy of D preserves that hyperbolic metric.

In order to complete the proof of Proposition 2.1, case (a), it remains only

to prove the splitting property of M̃ . This will follow from a general Splitting
Lemma which we postpone to Section 3.

2.2. The parabolic case. — If all the leaves of L are parabolic, the leafwise
Poincaré metric is identically zero and we cannot say, a priori, that L∗ is pseudo-
effective (unless M is projective, by [3]). But we shall see that indeed it is, and
it is even flat, thanks to the existence of the transverse distribution D.

The starting point is the following one [6]: if T ⊂ M is a codimension 1 disc
transverse to L, then the associated covering tube UT (union of the universal
coverings of the leaves through T ) is holomorphically trivial: UT ' T × C.
This fact can be reformulated in the following way. Take a foliated chart
U ' T×D ⊂ M around T = T×{0}. Then any nonvanishing section v0 of TL|T
(i.e. a vector field tangent to L at points of T ) can be extended to a section v
of TL|U in a canonical way: for every t ∈ T , we simply require that v|{t}×D is
the restriction to the plaque {t} × D of a complete nonsingular vector field on
the leaf of L containing {t} × D. This is well defined, because on a parabolic
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