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INVARIANTS OF REAL SYMPLECTIC

FOUR-MANIFOLDS OUT OF REDUCIBLE AND

CUSPIDAL CURVES

by Jean-Yves Welschinger

Abstract. — We construct invariants under deformation of real symplectic four-
manifolds. These invariants are obtained by counting three different kinds of real
rational J-holomorphic curves which realize a given homology class and pass through
a given real configuration of (the appropriate number of) points. These curves are
cuspidal curves, reducible curves and curves with a prescribed tangent line at some real
point of the configuration. They are counted with respect to some sign defined by the
parity of their number of isolated real double points and in the case of reducible curves,
with respect to some mutiplicity. In the case of the complex projective plane equipped
with its standard symplectic form and real structure, these invariants coincide with
the ones previously constructed in [11]. This leads to a relation between the count of
real rational J-holomorphic curves done in [11] and the count of real rational reducible
J-holomorphic curves presented here.
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Résumé (Courbes réductibles, cuspidales et invariants des variétés symplectiques

réelles de dimension quatre)
Nous construisons des invariants par déformation des variétés symplectiques réelles

de dimension quatre. Ces invariants sont obtenus en comptant trois différents types de
courbes J-holomorphes rationnelles réelles qui réalisent une classe d’homologie donnée
et passent par une configuration réelle donnée d’un nombre (adéquat) de points. Ces
courbes sont des courbes cuspidales, réductibles et des courbes ayant une tangente
prescrite en l’un des points de la configuration. Elles sont comptées en fonction d’un
signe qui dépend de la parité du nombre de leurs points doubles réels isolés et, dans
le cas des courbes réductibles, en fonction d’une multiplicité. Dans le cas du plan
projectif complexe muni de ses formes symplectiques et structures réelles standards,
ces invariants coincident avec ceux précédemment construits dans [11]. Ceci mène à
une relation entre le comptage de courbes J-holomorphes rationnelles réelles réalisé
dans [11] et le comptage de courbes J-holomorphes rationnelles réductibles réelles
présenté ici.
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Introduction and statement of the results

Let (X,ω, cX) be a real symplectic four-manifold, that is a triple made of
a smooth compact four-manifold X , a symplectic form ω on X and an invo-
lution cX on X such that

c∗Xω = −ω.

The fixed point set of cX is called the real part of X and is denoted by RX .
A large source of examples is provided by smooth projective surfaces defined

by a system of polynomials with real coefficients, the symplectic form is then
the restriction of the Fubini-Study form of the ambiant projective space, and
the real structure is the restriction of its complex conjugation. Note that the
real locus RX is assumed to be non empty here so that it is a smooth lagrangian
surface of (X,ω).

With every such real symplectic four-manifold comes some function

χ : d ∈ H2(X ; Z) #−→ χd(T ) ∈ Z[T1, . . . , TN ],
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where N denotes the number of connected components of the real locus of
the manifold. This function has been constructed in [11] by exctracting integer
valued invariants – the coefficients of the polynomial χd(T ) – from the following
problem of real enumerative geometry: how many real rational curves do realize
the homology class d and pass through the adequate number of points?

Remember that for this problem to make sense, we introduce an auxiliary
generic almost complex structure J , that is a complex structure on the tangent
bundle TX , and we count real rational J-holomorphic curves, that is immersed
two-dimensional spheres which are preserved by the involution cX and whose
tangent planes are invariant under J . The adequate number of points is then
the expected dimension of this space of real rational J-holomorphic curves, that
is c1(X)d− 1, where c1(X) is the first Chern class of the manifold (X,ω).

Remember that all of these finitely many curves are images of Z/2Z-
equivariant immersions u : (CP 1, conj) → (X, cX) and the above mentionned
invariants are obtained by counting these curves with respect to some sign ±1
determined by the parity of the number of pairs of complex conjugated points
in the set u−1(RX).

For example, the cubic planar real rational curve parameterized by t ∈ C #→
(t2, t3 + εt) is counted positively if ε < 0 and negatively if ε > 0 since u−1(RX)
then contains {±i

√
ε }, and the pure imaginary planar conic with affine equation

x2 + y2 = −1 is a real rational curve, but not the image of a Z/2Z-equivariant
immersion u : (CP 1, conj)→ (X, cX) since its real part is empty.

Remember finally that if we do not obtain a unique invariant as the Gromov-
Witten invariant in the complex case, it is due to the fact the integers we
obtain depend on the number of pairs of complex conjugated points in the
chosen configuration of c1(X)d− 1 points as well as on the distribution of the
remaining points in the different connected components of the real part.

The existence of these invariants raises various questions. Are there analog
invariants in higher dimensions? Of which problems of real enumerative geom-
etry is it possible to extract some integer valued invariants? Note that such
invariants then bound from below the number of real solutions of the given
problem, see Corollary 2.2 of [11]. Does some recursive formula similar to the
one obtained by M. Kontsevich for the Gromov-Witten invariants exist?

The works [12] and [10] provide some positive answer to the first question.
The present paper, as well as [9] which can be considered as a continuation
of this work, is devoted to the study of the next two questions. The problem
addressed in [9] is to replace one point condition in the above problem by one
tangency condition with some given curve L in the real part RX , as in the
classical problem of counting real planar conics tangent to five generic real
conics for example. It is proven in [9] that some integer valued invariants can
indeed be extracted from this problem, but this requires to take into account
other kinds of curves which appear in generic 1-parameter families of curves,
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namely two components reducible curves, cuspidal curves and curves with some
prescribed tangent line at one point of the configuration (or equivalently from
Proposition 3.4 of [11], curves having one double point at some point of the
configuration). The present paper is actually devoted to the case where L
is empty. In this case, only the three terms we have just mentionned occur and
indeed they hide some integer valued invariants, see Theorem 0.1. Moreover,
these new invariants can be compared with the ones of [11], see Proposition 0.3
below, leading to some relation between the count of generic real rational curves
of [11] with the one of real reducible curves done here. However, this relation
does not lead to some recursive formula similar to the one obtained in the
complex case by M. Kontsevich, see Remark 0.4 below. Note that since the
preprint version of this paper and of [9] have appeared, progress has been
made on the questions of computation or finding recursion formulas, see [13]
and Remark 3 therein.

Let us now come to the precise formulation of the main results of this paper.

We label the connected components of the real part by (RX)1, . . . , (RX)N .
Let $& 1 be an integer large enough and Jω be the space of almost complex

structures of X which are tamed by ω and of class C". Let RJω be the subspace
of Jω made of almost complex structures for which the involution cX is J-anti-
holomorphic. These two spaces are separable Banach manifolds which are non
empty and contractible (see §1.1 of [11] for the real case).

Let d ∈ H2(X ; Z) be a homology class satisfying c1(X)d > 1 and set

ν = c1(X)− 2.

Let x = (x1, . . . , xν) ∈ Xν be a real configuration of ν distinct points of X ,
that is an ordered subset of distinct points of X which is globally invariant
under cX . For j ∈ {1, . . . , N}, we denote by rj the number of points in the
configuration x that are located in the component (RX)j and we set

r = (r1, . . . , rN ),

so that the N -tuple r encodes the equivariant isotopy class of x. We will assume
throughout the paper that r '= (0, . . . , 0), see Remark 3.5.

Finally, denote by I the subset of those i ∈ {1, . . . , ν} for which xi is fixed
by the involution cX .

For each i ∈ I, choose a line Ti in the tangent plane TxiRX .
Then, for a generic choice of J ∈ RJω, there are only finitely many real ratio-

nal J-holomorphic curves which realize the homology class d, pass through x
and are cuspidal. Moreover, these curves are all irreducible and have only
transversal double points as well as a unique real ordinary cusp as singulari-
ties.

Denote by Cuspd(J, x) this finite set of cuspidal curves.
Likewise, there are only finitely many real rational J-holomorphic curves

which realize the homology class d, pass through x and are reducible. Moreover,
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these curves have only two irreducible components and only transversal double
points as singularities.

Denote by Redd(J, x) this finite set of reducible curves.
Note that since I '= ∅, both irreducible components of such curves are real.

Indeed, they would otherwise be exchanged by the involution cX and would
intersect the real locus at only finitely many points. The condition to pass
through a point of I would then cost two degrees of liberty instead of one so
that generically such curves do not appear. Finally, there are only finitely many
real rational J-holomorphic curves which realize the homology class d, pass
through x and whose tangent line at some point xi, i ∈ I, is Ti. Moreover, the
point xi having this property is then unique and these curves are all irreducible
with only transversal double points as singularities.

Denote by Tand(J, x) this finite set of rational curves.
Note that if C ∈ Cuspd(J, x)∪Redd(J, x)∪ Tand(J, x), then all the singular-

ities of C are disjoint from x.
Following [11], we define the mass of C and denote by m(C) its number of

real isolated double points.
Here, a real double point is said to be isolated when it is the local intersection

of two complex conjugated branches, whereas it is said to be non isolated when
it is the local intersection of two real branches.

If C belongs to Redd(J, x) and C1, C2 denote its irreducible components,
then we define the multiplicity of C, and denote by mult(C), the number of real
intersection points between C1 and C2, that is the cardinality of RC1 ∩RC2.

We then set

Γd
r(J, x) =

∑

C∈Cuspd(J,x)∪Tand(J,x)

(−1)m(C) −
∑

C∈Redd(J,x)

(−1)m(C) mult(C).

Theorem 0.1. — Let (X,ω, cX) be a real symplectic four-manifold and

d ∈ H2(X ; Z) be such that c1(X)d > 1, c1(X)d '= 4.

The connected components of RX are labeled by (RX)1, . . . , (RX)N . Let x ⊂ X
be a real configuration of c1(X)d − 2 distinct points, rj be the cardinality
of x ∩ (RX)j and r = (r1, . . . , rN ). Finally, let J ∈ RJω be generic enough
so that the integer Γd

r(J, x) is well defined. Then, this integer Γd
r(J, x) neither

depends on the choice of J , nor on the choice of x.

(The condition c1(X)d '= 4 is to avoid appearance of multiple curves, see
Remark 1.10.)

From this theorem, the integer Γd
r(J, x) can be denoted without ambiguity

by Γd
r , and when it is not well defined, we set Γd

r = 0. We then denote by Γd(T )
the generating function

∑

r∈NN

Γd
rT

r ∈ Z[T1, . . . , TN ],
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