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CASCADE OF PHASES IN TURBULENT FLOWS

by Christophe Cheverry

Abstract. — This article is devoted to incompressible Euler equations (or to Navier-
Stokes equations in the vanishing viscosity limit). It describes the propagation of
quasi-singularities. The underlying phenomena are consistent with the notion of a
cascade of energy.

Résumé (Cascade de phases pour des fluides turbulents). — Cet article étudie les
équations d’Euler incompressible (ou de Navier-Stokes en présence de viscosité évanes-
cente). On y décrit la propagation de quasi-singularités. Les phénomènes sous-jacents
confirment l’idée selon laquelle il se produit une cascade d’énergie.

1. Introduction

Consider incompressible fluid equations

(E) ∂tu + (u ·∇)u + ∇p = 0, div u = 0, (t, x) ∈ [0, T ]× R
d,

where u = t(u1, . . . ,ud) ∈ R
d is the fluid velocity and p ∈ R is the pressure.

The structure of weak solutions of (E) in d-space dimensions with d ≥ 2 is a
problem of wide current interest [3], [5], [25]. The questions are how to describe
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BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2006/33/$ 5.00
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the phenomena with adequate models and how to visualize the results in spite
of their complexity. We will achieve a small step in these two directions.

According to the physical intuition, the appearance of singularities is linked
with the increase of the vorticity. Along this line, we have to mark the contri-
butions [2] and [10]. Interesting objects are solutions which do not blow up in
finite time but whose associated vorticities increase arbitrarily fast. These are
quasi-singularities. Their study is of practical importance.

Typical examples of quasi-singularities are oscillations. This is a well-known
fact going back to [4], [26]. The works [4] and [26] rely on phenomenological
considerations and engineering experiments. Further developments are related
to homogenization [14], [15], compensated compactness [12], [18] and non linear
geometric optics [7], [8], [9].

DiPerna and Majda [12] show the persistence of oscillations in three dimen-
sional Euler equations (d = 3). To this end, they select parameters ε ∈ ]0, 1]
and look at

(1.1) uε
s(t, x) := t

(
g(x2, ε

−1x2), 0,h(x1 − g(x2, ε
−1x2)t, x2, ε

−1x2)
)

where g(x2, θ) and h(x1, x2, θ) are smooth bounded functions with period 1
in θ. They remark that the functions uε

s are exact smooth solutions of (E) and
they let ε goes to zero. Yet, this construction is of a very special form. First,
it comes from shear layers (these are steady 2D solutions) as

ũε
s(t, x) = ũε

s(0, x) = t
(
g(x2, ε

−1x2), 0
)
∈ R

2.

Secondly, it involves a phase ϕ0(t, x) ≡ x2 which does not depend on ε. Of
course, this is a common fact [11], [21], [20], [28] when dealing with such large
amplitude high frequency waves. Nevertheless, this is far from giving a complete
idea of what can happen. Our aim in this paper is to develop a theory which
allows to remove the two restrictions mentioned above.

Section 2 is devoted to notations.
Section 3 gives the main results.
Subsection 3.1 states Theorem 3.1. Introduce the geometrical phase

ϕε
g(t, x) := ϕ0(t, x) +

`−1∑

k=1

εk/`ϕk(t, x), ` ∈ N∗.

Fix [ = (`,N) ∈ N
2 where the integers ` and N are such that 0 < ` < N .

Theorem 3.1 provides with approximate solutions uε
[ defined on the interval

[0, T ] with T > 0 and having the form

uε
[(t, x) = t(uε1

[ , . . . ,u
εd
[ )(t, x)(1.2)

= u0(t, x) +

N∑

k=1

εk/`Uk

(
t, x, ε−1ϕε

g(t, x)
)
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where the smooth profiles

Uk(t, x, θ) = t(U1
k , . . . , U

d
k )(t, x, θ) ∈ R

d, 1 ≤ k ≤ N

are periodic functions of θ ∈ T := R/Z. We assume that

∃(t, x, θ) ∈ [0, T ]× R
d × T, ∂θU1(t, x, θ) 6= 0.

The family {uε
[}ε∈]0,1] is ε-stratified [20] with respect to the phase ϕε

g with
in general ϕε

g 6≡ ϕ0. The presence in ϕε
g of the non trivial functions ϕk with

1 ≤ k ≤ ` − 1 is necessary and sufficient to encompass all the geometrical
features of the propagation.

We say that {uε
[}ε is a weak, a strong or a turbulent oscillation according

as we have respectively ` = 1, ` = 2 or ` ≥ 3. The order of magnitude of the
energy of the oscillations is ε1/`. Compute the vorticities associated with uε

[ .

These are the skew-symmetric matrices Ωε
[ = (Ωεi

[j)1≤i,j≤d where

Ωεi
[j(t, x) := (∂ju

εi
[ − ∂iu

εj
[ )(t, x)

=

N∑

k=1

εk/`−1(∂jϕ
ε
g∂θU

i
k − ∂iϕ

ε
g∂θU

j
k)

(
t, x, ε−1ϕε

g(t, x)
)

+ (∂ju
i
0 − ∂iu

j
0)(t, x) +

N∑

k=1

εk/`(∂jU
i
k − ∂iU

j
k)

(
t, x, ε−1ϕε

g(t, x)
)
.

The principal term in Ωε
[ is of size ε1/`−1. When ` ≥ 2, there is no uniform

majoration in Lp on the family {Ωε
[}ε∈]0,1] since

lim
ε→0

‖Ωε
[‖Lp([0,T ]×Rd) = +∞, ∀p ∈ [1,∞].

In particular, if d = 3, there is no uniform control on the enstrophy
∫ T

0

∫

R3

|ωε
[ (t, x)|2 dtdx, ωε

[ (t, x) := (∇ ∧ uε
[)(t, x) ≡ Ωε

[(t, x).

We see here that strong and turbulent oscillations are examples of quasi-
singularities. Observe that the expansion (1.2) involves a more complicated
structure than in (1.1) though the corresponding regime is less singular.

Subsection 3.2 states the Proposition 3.1. Introduce the complete phase

ϕε
[(t, x) := ϕ0(t, x) +

N∑

k=1

εk/`ϕk(t, x).

Proposition 3.1 deals with approximate solutions ũε
[ defined on the interval

[0, T ] with T > 0 and having the form

ũε
[(t, x) = t(ũε1

[ , . . . , ũ
εd
[ )(t, x)(1.3)

= u0(t, x) +

N∑

k=1

εk/`Ũk

(
t, x, ε−1ϕε

[(t, x)
)
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where the smooth profiles

Ũk(t, x, θ) = t(Ũ1
k, . . . , Ũ

d
k)(t, x, θ) ∈ R

d, 1 ≤ k ≤ N

are periodic functions of θ ∈ T. Again

∃(t, x, θ) ∈ [0, T ]× R
d × T, ∂θŨ1(t, x, θ) 6= 0.

Section 4 shows at first Proposition 3.1 and then Theorem 3.1.

The proof of Proposition 3.1 is based on some induction argument which is
quite straightforward. In fact, the difficulty is hidden in the introduction of the
adjusting phase

ϕε
a(t, x) := ε−1(ϕε

[ − ϕε
g)(t, x) =

N∑

k=l

εk/`−1ϕk(t, x).

Indeed, the use of the geometrical phase ϕε
g does not suffice to perform the BKW

analysis. Among other things, the extra terms ϕk with ` ≤ k ≤ N must be
incorporated in order to put the system of formal equations in a triangular
form.

Subsection 4.2 explains how to deduce Theorem 3.1 from Proposition 3.1.
It mainly consists in eliminating the adjusting phase (and in checking that the
remainder created by that operation is small) as well as in replacing the small
divergence of Proposition 3.1 by a zero divergence.

Section 5 interprets the results 3.1.
It starts with various comments related to the Leray projector, the infinite

accuracy of approximate solutions, the finite speed of propagation and the large
time existence.

Subsection 5.2 proceeds to a careful study of the hierarchy of phases. We
examine successively the phase shift ϕ1, the phase shift ϕ2, and the other
terms ϕk with 3 ≤ k ≤ N .

The formal construction reveals that the phase shift ϕ1 and the terms ϕk

with 2 ≤ k ≤ ` − 1 play different parts. The rôle of ϕ1 is partly revealed
in the articles [7] and [8] which deal with the case ` = 2. When ` ≥ 3, the
phenomenon to emphasize is the creation of the ϕk with 2 ≤ k ≤ `−1. Indeed,
suppose that

ϕ2(0, .) ≡ · · · ≡ ϕ`−1(0, .) ≡ 0, ` ≥ 3.

Then, generically, we find

∃t ∈ ]0, T ], ϕ2(t, .) 6≡ 0, . . . , ϕ`−1(t, .) 6≡ 0.

Now, starting with large amplitude waves (this corresponds to the limit case
` = +∞) that is

uε
∞(0, x) =

∞∑

k=0

εkUk

(
0, x, ε−1ϕ0(0, x)

)
, ∂θU0 6≡ 0,
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the description of uε
∞(t, .) on the interval [0, T ] with T > 0 needs the introduc-

tion of an infinite cascade of phases ϕk. The scenario is the following. Oscil-
lations of the velocity develop spontaneously in all the intermediate frequen-
cies εk/`−1 and in all the corresponding directions ∇ϕk(t, x). This expresses
turbulent features in the flow.

Subsection 5.3 alludes to closure problems. This is the classical difficulty
encountered when dealing with expansions as uε

[ . It is solved here through the
introduction of the ϕk with 1 ≤ k ≤ N .

Subsection 5.4 insists on obvious instabilities which are mechanisms of am-
plification which can be detected just by looking at the BKW analysis presented
before. It allows to retrieve known non linear instability results on Euler equa-
tions (see Proposition 5.1).

Subsection 5.5 and subsection 5.6 are mainly heuristical. They could also
interest researchers in Fluid mechanics. They contain no precise statement or
proof but consist in reading Theorem 3.1 in the light of previous numerical,
mathematical or physical results. They derive many informations about mi-
crostructures, compensated compactness and non linear geometric optics. They
also confirm observations which have been made in the statistical approach of
turbulences [16], [24].

Section 6 consider parabolic perturbations of Euler equations. This change
of framework has two main motivations.

First, it has a physical meaning. Most real models involve some viscosity.
And, even if it were only at a formal level, it is interesting to determine what is
the size and the structure of the dissipation terms which could be incorporated
without changing the phenomena under study.

Secondly, it has implications on the stability. The expressions uε
[ are only ap-

proximate solutions of Euler equations, yielding small error terms f ε
[ as source

terms. The matter is to know if the addition of (well-adjusted) dissipation
terms implies the existence of exact solutions (of Navier-Stokes type equations)
which coincide with uε

[(0, .) at time t = 0, which are defined on [0, T ] where
T > 0 is independent on ε, and which are close to approximate divergence free
solutions like uε

[ .
These two directions are difficult tasks. In this paper, we will be satisfied to

touch on these subjects.
In Subsection 6.1, we build (Proposition 6.1) approximate solutions {uε

[}ε

to some Navier-Stokes equation (NS) involving the variables t, x and θ. We
start by describing the properties of the parabolic perturbation. The viscosity is
vanishing and anisotropic. It could be real or artificial but it must be compatible
with the complete phase ϕε

[ . Then, we adapt the proof of subsection 4.1 to this
new setting. In particular, we are faced with the study of the divergence free
relation written in the (t, x, θ) variables.
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