
Bull. Soc. math. France

134 (4), 2006, p. 509–557

POINTED k-SURFACES

by Graham Smith

Abstract. — Let S be a Riemann surface. Let H3 be the 3-dimensional hyperbolic
space and let ∂∞H3 be its ideal boundary. In our context, a Plateau problem is

a locally holomorphic mapping ϕ : S → ∂∞H3 = bC. If i : S → H3 is a convex
immersion, and if N is its exterior normal vector field, we define the Gauss lifting, ı̂,
of i by ı̂ = N . Let −→n : UH3 → ∂∞H3 be the Gauss-Minkowski mapping. A solution
to the Plateau problem (S, ϕ) is a convex immersion i of constant Gaussian curvature
equal to k ∈ (0, 1) such that the Gauss lifting (S, ı̂) is complete and −→n ◦ ı̂ = ϕ. In this
paper, we show that, if S is a compact Riemann surface, if P is a discrete subset of S

and if ϕ : S → bC is a ramified covering, then, for all p0 ∈ P, the solution (S\P, i) to the
Plateau problem (S \ P, ϕ) converges asymptotically as one tends to p0 to a cylinder
wrapping a finite number, k, of times about a geodesic terminating at ϕ(p0). Moreover,
k is equal to the order of ramification of ϕ at p0. We also obtain a converse of this
result, thus completely describing complete, constant Gaussian curvature, immersed
hypersurfaces in H3 with cylindrical ends.
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Résumé (k-surfaces à points). — Soit S une surface de Riemann. Soit H3 l’espace
hyperbolique de dimension 3 et soit ∂∞H3 son bord à l’infini. Dans le cadre de cet
article, un problème de Plateau est une application localement holomorphe ϕ : S →

∂∞H3 = Ĉ. Si i : S → H3 est une immersion convexe, et si N est son champ de vecteurs
normal, on définit ı̂, la relevée de Gauss de i, par ı̂ = N . Soit −→n : UH3 → ∂∞H3

l’application de Gauss-Minkowski. Une solution au problème de Plateau (S, ϕ) est
une immersion convexe i à courbure gaussienne constante égale à k ∈ ]0, 1[ telle que sa
relevée de Gauss (S, ı̂) soit complète en tant que sous-variété immergée et que −→n ◦ı̂ = ϕ.
Dans cet article, on montre que, si S est une surface de Riemannn compacte, si P est

un sous-ensemble discret de S et si ϕ : S → Ĉ est un revêtement ramifié, alors,
pour tout p0 ∈ P, la solution (S \ P, i) au problème de Plateau (S \ P, ϕ) converge
asymptotiquement vers un cylindre qui s’enroule un nombre fini k de fois autour d’une
géodésique ayant ϕ(p0) pour une de ses extrémités lorsqu’on s’approche de p0. De plus,
k est égale à l’ordre de ramification de ϕ en p0. On obtient également une réciproque
de ce résultat nous permettant de décrire entièrement les surfaces complètes immergées
dans H3 à courbure gaussienne constante et aux bouts cylindriques.

1. Introduction

In this paper, by establishing a result permitting us to describe the be-
haviour “at infinity” of surfaces of constant Gaussian curvature immersed in
3-dimensional hyperbolic space, we obtain a complete geometric description of
solutions to the Plateau problem for compact Riemann surfaces with marked
points.

Let H3 be 3-dimensional hyperbolic space, and let ∂∞H3 be its ideal bound-
ary (see, for example [1]). The ideal boundary of H3 may be identified canon-

ically with the Riemann sphere Ĉ. In this context, following [4] and [9], we
define a Plateau problem to be a pair (S, ϕ) where S is a Riemann surface and
ϕ : S → ∂∞H3 is a locally conformal mapping (i.e., a locally homeomorphic
holomorphic mapping). The Plateau problem (S, ϕ) is said to be of hyperbolic,
parabolic or elliptic type depending on whether S is hyperbolic, parabolic or
elliptic respectively.

Let UH3 be the unitary bundle over H3. For i : S → H3 an immersion, using
the canonical orientation of S, we may define the unit normal exterior vector
field N over S. This field is a section of UH3 over i. We define the Gauss lifting
ı̂ of i by ı̂ = N. We define a k-surface to be an immersed surface Σ = (S, i)

in H3 of constant Gaussian curvature k whose Gauss lifting Σ̂ = (S, ı̂) is a
complete immersed surface in UH3. For k ∈ (0, 1), a solution to the Plateau
problem (S, ϕ) is a k-surface Σ = (S, i) such that, if we denote by −→n the
Gauss-Minkowski mapping of H3, then the Gauss lifting ı̂ of i satisfies

ϕ = −→n ◦ ı̂.
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In [9] we show that, if (S, ϕ) is a hyperbolic Plateau problem, then, for all
k ∈ (0, 1) there exists a unique solution i to the Plateau problem (S, ϕ) with
constant Gaussian curvature k. Moreover, we show that i depends continuously
on ϕ. In this paper, following on from these ideas, we study the structure of
solutions to the Plateau problem (S, ϕ) when S is a compact Riemann surface
with isolated marked points.

The following result, which provides the key to the rest of the paper, de-
scribes the behaviour “at infinity” of solutions to the Plateau problem.

Theorem 1.1 (Boundary Behaviour Theorem). — Let S be a hyperbolic Rie-

mann surface and let ϕ : S → Ĉ be a locally conformal mapping. For k ∈ (0, 1),
let i : S → UH3 be an immersion such that (S, i) is the unique solution to the
Plateau problem (S, ϕ) with constant Gaussian curvature k. Let K be a com-
pact subset of S and let Ω be a connected component of S \ K. Let q be an
arbitrary point in the boundary of ϕ(Ω) that is not in ϕ(Ω∩K).

If (pn)n∈N ∈ Ω is a sequence of points such that (ϕ(pn))n∈N tends towards q,
then the sequence (i(pn))n∈N also tends towards q.

Remark. — This theorem confirms our intuition concerning solutions to the
Plateau problem. In particular, if S is a Jordan domain in ∂∞H3, if ϕ is the
canonical embedding and if i : S → H3 is a solution to the Plateau prob-
lem (S, ϕ), then the ideal boundary of the immersed surface (S, i) coincides
with ∂S.

We use this theorem to study the behaviour of solutions to the Plateau prob-
lem near to isolated singularities. We begin by a series of definitions concerning
tubes about geodesics. For Γ a geodesic in H3, we define NΓ to be the normal
bundle over Γ in UH3:

NΓ =
{
np ∈ UH

3 s.t. p ∈ Γ, np ⊥ TpΓ
}
.

A tube about Γ is a pair T = (S, ı̂) where S is a complete surface and ı̂ : S → NΓ

is a covering map. Since NΓ is conformally equivalent to S1×R, where S1 is the
circle of radius 1 in C, we may assume either that S = S1×R or that S = R×R.
In the former case, ı̂ is a covering map of finite order, and, if k is the order
of ı̂, then we say that the tube T is a tube of order k. The application ı̂ is then
unique up to vertical translations and horizontal rotations of S1 × R. In the
latter case, we say that T is a tube of infinite order. The application ı̂ is then
unique up to translations of R×R. In the sequel, we will only be interested in
tubes of finite order.

Let S be a compact surface and let P be a finite set of points in S. Let
ı̂ : S \ P → UH3 be an immersion. Let p be an arbitrary point in P . We say
that (S \ P , ı̂) is asymtotically tubular of order k about p if and only if it is a
bounded graph over a half tube of order k in UH3, which tends towards the tube
itself as one tends towards infinity. More precisely, let Exp : TUH3 → UH3
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be the exponential mapping and let NNΓ be the normal bundle of NΓ. Then
(S \ P , ı̂) is asymptotically tubular of order k about p if there exists

(i) a geodesic Γ and a tube T = (S1 × R, ̂) of order k about Γ,

(ii) a section λ of ̂∗NNΓ over S1 × (0,∞),

(iii) a neighbourhood Ω of p in S such that P ∩Ω = {p}, and

(iv) a diffeomorphism α : S1 × (0,∞) → Ω \ {p},
such that

(i) ı̂ ◦ α = Exp ◦λ,
(ii) α(eiθ, t) → p as t→ ∞, and

(iii) for all p ∈ N, the derivative Dpλ(eiθ, t) tends to zero as t tends to +∞.

We now obtain the following result.

Theorem 1.2. — Let S be a Riemann surface. Let P be a discrete subset

of S such that S \P is hyperbolic. Let ϕ : S → Ĉ be a ramified covering having
critical points in P. Let κ be a real number in (0, 1). Let i : S \ P → H3 be
the unique solution to the Plateau problem (S \ P , ϕ) with constant Gaussian

curvature κ. Let Σ̂ = (S \P , ı̂) be the Gauss lifting of Σ. Let p0 be an arbitrary
point in P.

If ϕ has a critical point of order k at p0, then Σ̂ is asymptotically tubular of
order k at p0.

Remark. — This means that if the mapping ϕ has a critical point of order k
at p0, and is thus equivalent to z 7→ zk, then the immersed surface (S \ P , i)
wraps k times about a geodesic which terminates at ϕ(p0). We observe that
critical points of order 1 are admitted, even though they are not, strictly speak-
ing, critical points.

We also obtain a converse to this result:

Theorem 1.3. — Let S be a surface and let P ⊆ S be a discrete subset of S.
Let i : S \ P → H3 be an immersion such that Σ = (S \ P , i) is a k-surface
(and is thus the solution to a Plateau problem). Let −→n : UH3 → ∂∞H3 be
the Gauss-Minkowski mapping which sends UH3 to ∂∞H3. Let ı̂ be the Gauss
lifting of i so that ϕ = −→n ◦ ı̂ defines the Plateau problem to which i is the
solution. Let H be the holomorphic structure generated over S \ P by the local
homeomorphism ϕ. Let p0 be an arbitrary point in P, and suppose that Σ is
asymptotically tubular of order k about p0.

Then there exists a unique holomorphic structure H̃ over (S\P)∪{p0} and a

unique holomorphic mapping ϕ̃ : (S \ P)∪{p0} → Ĉ such that H̃ and ϕ̃ extend
H and ϕ respectively. Moreover, ϕ̃ has a critical point of order k at p0.
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Remark. — Together, these two theorems provide a complete geometric des-
crition of solutions to the Plateau problem (S, ϕ) when S is a compact Riemann
surface with a finite number of marked points.

Throughout this paper, we will use the convention that 0 /∈ N.

In the first section, we provide an overview of the definitions and notations
that will be used in the sequel. In the second section, we study the differential
geometry of the unitary bundle of a Riemannian manifold, focusing, in particu-
lar, on the canonical contact and complex structures of this bundle. In the third
section, we define the Plateau problem, providing various auxiliary definitions
and recalling existing results of [4] and [9] which will be required in the sequel.
In the fifth section, we prove Theorem 1.1. In the sixth section, we study the
geometry of the Plateau problem (D∗, z 7→ z), which provides a model for the
study of all other cases. In the seventh section, we prove Theorem 1.2, and in
the final section we prove Theorem 1.3.

These results provoke the following reflections concerning potential future
avenues of research: first, we obtain a homeomorphism between the space of
meromorphic mappings over compact Riemann surfaces with a finite number
of marked points on the one hand and complete positive pseudo-holomorphic
curves immersed in UH3 with cylindrical ends on the other. These pseudo-
holomorphic curves project down to surfaces of constant Gaussian curvature
immersed into H3. Such an equivalence may well permit us to better understand
the structure of either one or both of these two spaces. Second, by integrating
primitives of the canonical volume form of H3 over these immersed surfaces,
one obtains a “volume”bounded by these surfaces. If this volume can be shown
to be finite, then we would obtain a new function over the Teichmüller space of
compact Riemann surfaces with marked points. We would then be interested
in the properties of such a function. Finally, since the reasoning employed
is essentially geometric in nature, and does not appear to rely on the precise
analytic structure of H3, it seems reasonable to expect an analogous result in
the case where H3 is replaced by a Hadamard manifold whose curvature lies in
the range [−K,−k], where K > k > 0 are two positive real numbers.

I would like to thank François Labourie for having initially brought my
attention to this problem.

2. Immersed surfaces – Definitions and notations

2.1. Definitions. — In this section we will review basic definitions from the
theory of immersed submanifolds and establish the notations that will be used
throughout this article.
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