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CUTTING THE LOSS OF DERIVATIVES FOR
SOLVABILITY UNDER CONDITION (%)

BY NICcOLAS LERNER

ABSTRACT. — For a principal type pseudodifferential operator, we prove that condi-
tion (¢) implies local solvability with a loss of 3/2 derivatives. We use many elements
of Dencker’s paper on the proof of the Nirenberg-Treves conjecture and we provide
some improvements of the key energy estimates which allows us to cut the loss of
derivatives from e 4+ 3/2 for any ¢ > 0 (Dencker’s most recent result) to 3/2 (the
present paper). It is already known that condition (¢)) does not imply local solvability
with a loss of 1 derivative, so we have to content ourselves with a loss > 1.

RESUME (Diminution de la perte de dérivées pour la résolubilité sous la condition (¥))

Pour un opérateur de type principal, nous démontrons que la condition (¥) implique
la résolubilité locale avec perte de 3/2 dérivées. Nous utilisons beaucoup d’éléments de
la démonstration par Dencker de la conjecture de Nirenberg-Treves et nous limitons
la perte de dérivées a 3/2, améliorant le résultat le plus récent de Dencker (perte de
€ + 3/2 dérivées pour tout € > 0). La condition (¥) n’impliquant pas la résolubilité
locale avec perte d’une dérivée, nous devons nous contenter d’une perte > 1.

1. Introduction and statement of the results

1.1. Introduction. — In 1957, Hans Lewy [25] constructed a counterexam-
ple showing that very simple and natural differential equations can fail to have
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local solutions; his example is the complex vector field Lo = 0y, + 0., +i(z1 +
ix2)0z, and one can show that there exists some C* function f such that
the equation Lou = f has no distribution solution, even locally. A geometric
interpretation and a generalization of this counterexample were given in 1960
by L. Hérmander in [10] and extended in [11] to pseudodifferential operators.
In 1970, L. Nirenberg and F. Treves ([29, 30, 31]), after a study of complex
vector fields in [28] (see also [26]), refined this condition on the principal sym-
bol to the so-called condition (), and provided strong arguments suggesting
that it should be equivalent to local solvability. The necessity of condition (1))
for local solvability of pseudodifferential equations was proved in two dimen-
sions by R. Moyer in [27] and in general by L. Hérmander ([13]) in 1981. The
sufficiency of condition () for local solvability of differential equations was
proved by R. Beals and C. Fefferman ([1]) in 1973; they created a new type of
pseudodifferential calculus, based on a Calderén-Zygmund decomposition, and
were able to remove the analyticity assumption required by L. Nirenberg and
F. Treves. For differential equations in any dimension ([1]) and for pseudod-
ifferential equations in two dimensions ([18], see also [19]), it was shown more
precisely that (¢) implies local solvability with a loss of one derivative with
respect to the elliptic case: for a differential operator P of order m (or a pseu-
dodifferential operator in two dimensions), satisfying condition (¢), f € Hf .,
the equation Pu = f has a solution u € Hf:gm_l. In 1994, it was proved by
N.L. in [20] (see also [16], [24]) that condition (1)) does not imply local solvabil-
ity with loss of one derivative for pseudodifferential equations, contradicting
repeated claims by several authors. However in 1996, N. Dencker in [4], proved
that these counterexamples were indeed locally solvable, but with a loss of two
derivatives.

In [5], N. Dencker claimed that he can prove that condition (¢) implies local
solvability with loss of two derivatives; this preprint contains several break-
through ideas on the control of the second derivatives subsequent to condi-
tion (v) and on the choice of the multiplier. The paper [7] contains a proof
of local solvability with loss of two derivatives under condition (¢), providing
the final step in the proof of the Nirenberg-Treves conjecture; the more recent
paper [6] is providing a proof of local solvability with loss of € + % derivatives
under condition (¢), for any positive €. In the present article, we show that
the loss can be limited to 3/2 derivatives, dropping the € in the previous result.
We follow the pattern of Dencker’s paper and give some improvements on the
key energy estimates.

Acknowledgement. — For several months, I have had the privilege of ex-
changing several letters and files with Lars Hormander on the topic of solv-
ability. I am most grateful for the help generously provided. These personal
communications are referred to in the text as [17] and are important in all
sections of the present paper.
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1.2. Statement of the result. — Let P be a properly supported principal-
type pseudodifferential operator in a C° manifold M, with principal
(complex-valued)® symbol p. The symbol p is assumed to be a C*° ho-
mogeneous(? function of degree m on T*(M), the cotangent bundle minus the
zero section. The principal type assumption that we shall use here is that

(1.2.1) (z,8) € T*(M), p(x,§) = 0= I¢p(z,&) # 0.

Also, the operator P will be assumed of polyhomogeneous type, which means
that its total symbol is equivalent to p + > j>1Pm—j where pi is a smooth

homogeneous function of degree k on T*(M).

DEFINITION 1.2.1 (Condition ()). — Let p be a C°° homogeneous function
on T*(M). The function p is said to satisfy condition (¢) if, for z = 1 or 1,
Im zp does not change sign from — to + along an oriented bicharacteristic of
Re zp.

It is a non-trivial fact that condition (¢) is invariant by multiplication by
an complex-valued smooth elliptic factor (see section 26.4 in [14]).

THEOREM 1.2.2. — Let P be as above, such that its principal symbol p satisfies
condition (). Let s be a real number. Then, for all x € M, there exists a

_3
neighborhood V' such that for all f € H; ., there exists u € Hfotm 2 such that
Pu=finV.

Proof. — The proof of this theorem will be given at the end of section 4. O

Note that our loss of derivatives is equal to 3/2. The paper [20] proves that
solvability with loss of one derivative does not follow from condition (1), so we
have to content ourselves with a loss strictly greater than one. However, the
number 3/2 is not likely to play any significant role and one should probably
expect a loss of 1+e¢ derivatives under condition (). In fact, for the counterex-
amples given in [20], it seems (but it has not been proven) that there is only a
“logarithmic” loss, i.e., the solution u should satisfy u € log (D) (H5+m_1).

Nevertheless, the methods used in the present article are strictly limited to
providing a 3/2 loss. We refer the reader to our appendix A.4 for an argument
involving a Hilbertian lemma on a simplified model. This is of course in sharp
contrast with operators satisfying condition (P) such as differential operators
satisfying condition (¢). Let us recall that condition (P) is simply ruling out
any change of sign of Im(zp) along the oriented Hamiltonian flow of Re(zp).
Under condition (P) ([1]) or under condition (¢) in two dimensions ([18]),

(I)Naturally the local solvability of real principal type operators is also a consequence of
the next theorem, but much stronger results for real principal type equations were already
established in the 1955 paper [9] (see also section 26.1 in [14]).

(D Here and in the sequel, “homogeneous” will always mean positively homogeneous.
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local solvability occurs with a loss of one derivative, the “optimal” loss, and
in fact the same as for 9/0z;. One should also note that the semi-global
existence theorems of [12] (see also theorem 26.11.2 in [14]) involve a loss of
1+e€ derivatives. However in that case there is no known counterexample which
would ensure that this loss is unavoidable.

REMARK 1.2.3. — Theorem 1.2.2 will be proved by a multiplier method, in-
volving the computation of (Pu, Mu) with a suitably chosen operator M. It
is interesting to notice that, the greater is the loss of derivatives, the more
regular should be the multiplier in the energy method. As a matter of fact, the
Nirenberg-Treves multiplier of [30] is not even a pseudodifferential operator in
the S?/Z,l/Z class, since it could be as singular as the operator sign D,,; this
does not create any difficulty, since the loss of derivatives is only 1. On the
other hand, in [4], [23], where estimates with loss of 2 derivatives are handled,
the regularity of the multiplier is much better than S? /2,120 since we need
to consider it as an operator of order 0 in an asymptotic class defined by an
admissible metric on the phase space.

N.B. — For microdifferential operators acting on microfunctions, the suffi-
ciency of condition () was proven by J.-M. Trépreau [32] (see also [15]), so
the present paper is concerned only with the C'*° category.

1.3. Some notations. — First of all, we recall the definition of the Weyl
quantization a of a function a € S(R*"): for u € S(R"),

(1.3.1) (a"u)(z) = // 62”(1_3’)5@(% ;— y,{)u(y)dy

Our definition of the Fourier transform @ of u € S(R™) is 4(€§) = [ e~ 2" *Su(x)dx
and the usual quantization a(z,D,) of a € S(R?") is (a(z, Dy)u)(z) =
[ e¥meCa(x, £)a(€)dé. The phase space RY x RE is a symplectic vector space
with the standard symplectic form

(1'3'2) [(.T,f), (yﬂ?)] = <§ay> - <77,.T>.

DEFINITION 1.3.1. — Let g be a metric on R?", i.e., a mapping X — gx
from R?" to the cone of positive definite quadratic forms on R?”. Let M be a
positive function defined on R?".

(1) The metric g is said to be slowly varying whenever 3C > 0, Ir > 0,
VXY, T € R?",

gX(Y — X) < r? = C_lgy(T) < gX(T) < CQY(T)-

(2) The symplectic dual metric g7 is defined as g% (1') = sup,, (y=1[T} U]
)1/2

) > 1.

The parameter of g is defined as A\g(X) = infr.0 (9% (T)/9x(T)
we shall say that g satisfies the uncertainty principle if inf x Ag(X
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(3) The metric g is said to be temperate when 3C > 0, AN > 0, VX, Y, T €
RQn’
g (e g N
9%(T) < Cg(T) (1 + g% (X = Y)) .
When the three properties above are satisfied, we shall say that ¢ is
admissible. The constants appearing in (1) and (3) will be called the

structure constants of the metric g.
(4) The function M is said to be g-slowly varying if 3C > 0, 3r > 0, VX,Y €

}RQn7
. MX)
Y - X)<r? ct < <C.
9x ( )<t = S S
(5) The function M is said to be g-temperate if 3C' > 0,IN > 0, VX, Y €
}RQn7

<C(1+g%(x -v)".

M(Y)
When M satisfies (4) and (5), we shall say that M is a g-weight.

DEFINITION 1.3.2. — Let g be a metric on R?" and M be a positive function
defined on R?". The set S(M, g) is defined as the set of functions a € C>°(R?")
such that, for all [ € N, supy [|a)(X)| 4x M(X)~! < 0o, where a®) is the I-th
derivative. It means that VI € N,3C;,vX € R?" VT,...,T; € R?",

D (X)(T1,... ) < GM(X) [T gx (@)

1<5<1

REMARK. — If g is a slowly varying metric and M is g-slowly varying, there
exists M, € S(M,g) such that there exists C > 0 depending only on the
structure constants of g such that

. M.(X)
1.3. X e R < <C.
(1.3.3) VX € , < MX) <C

That remark is classical and its proof is sketched in the appendix A.2.

1.4. Partitions of unity. — We refer the reader to the chapter 18 in [14] for
the basic properties of admissible metrics as well as for the following lemma.

LEMMA 1.4.1. — Let g be an admissible metric on R?>". There exists a se-
quence (Xi)ren of points in the phase space R®*™ and positive numbers ro, No,
such that the following properties are satisfied. We define Uy, U, U™ as the
gk = gx, balls with center X;, and radius 1o, 2ro,4rg. There exist two families
of non-negative smooth functions on R®™, (xx)ren, (Vr)ken such that

ZXk(X):L suppxx C Ug, =1 on U}, suppyy C US™.
k

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



