

MESURES INVARIANTES ERGODIQUES

Albert Raugi

Tome 135 Fascicule 2

2007

MESURES INVARIANTES ERGODIQUES POUR DES PRODUITS GAUCHES

PAR ALBERT RAUGI

Résumé. — Soit (X,\mathfrak{X}) un espace mesurable muni d'une transformation bijective bi-mesurable τ . Soit φ une application mesurable de X dans un groupe localement compact à base dénombrable G. Nous notons τ_{φ} l'extension de τ , induite par φ , au produit $X \times G$. Nous donnons une description des mesures positives τ_{φ} -invariantes et ergodiques. Nous obtenons aussi une généralisation du théorème de réduction cohomologique de O. Sarig [5] à un groupe LCD quelconque.

ABSTRACT (Ergodic invariant measures for group-extensions fo dynamical systems) Let (X,\mathfrak{X}) be a measurable space. Let τ be a bi-measurable bijection from X onto X. Let φ be a measurable application from X to a second countable locally compact group G. We denote by τ_{φ} the extension of τ , induced by φ , to the product space $X \times G$. We describe the positive τ_{φ} -invariant and ergodic measures on $X \times G$. We also obtain a generalization of the cocycle reduction theorem of O. Sarig [5] to a general second countable locally group.

1. Résultats principaux

1.1. Notations. — Nous désignons par (X, \mathfrak{X}) un espace mesurable, par τ une transformation bijective bi-mesurable de X et par φ une application mesurable

Albert Raugi, IRMAR, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France • E-mail: Albert.Raugi@univ-rennes1.fr

Classification mathématique par sujets (2000). — 28D05, 37A05, 37A20, 37A40.

Mots clefs. — Produits gauches, mesures invariantes ergodiques, relations d'équivalence ergodiques, réduction cohomologique.

Texte reçu le 11 avril 2006, révisé le 24 octobre 2006

248 RAUGI (A.)

de X dans un groupe G localement compact à base dénombrable (LCD). Nous savons (voir [4]) que tout groupe LCD est métrisable; nous choisissons une métrique d sur G définissant la même topologie que celle de G.

Nous introduisons alors la transformation τ_{φ} de l'espace produit $X \times G$ définie par

$$\forall (x,g) \in X \times G, \quad \tau_{\varphi}(x,g) = (\tau(x), g\varphi(x)).$$

Pour tout groupe LCD H, nous notons m_H (resp. \widetilde{m}_H) une mesure de Haar à droite (resp. à gauche) sur les boréliens de H. Pour tout $u \in H$, nous appelons δ_u la mesure de Dirac au point u. Nous notons e l'élément neutre de H. Nous désignons par Δ_H la fonction modulaire de H définie par

$$\forall g \in H, \quad \widetilde{m}_H * \delta_g = \Delta_H(g)\widetilde{m}_H.$$

La mesure $\Delta_H \widetilde{m}_H$ est alors une mesure de Haar à droite sur H. Si ρ et μ sont deux mesures de Radon positives sur H, on note $\rho * \mu$ leur convolée (i.e. l'image par l'application $(x,g) \in H \times H \mapsto xg \in H$ de la mesure produit $\rho \otimes \mu$). Nous appelons exponentielle sur H toute application continue χ de H dans $]0, +\infty[$ vérifiant

$$\forall (g, g') \in H \times H, \quad \chi(gg') = \chi(g)\chi(g').$$

Pour toute application mesurable u de X dans G, nous désignons par φ_u l'application de X dans G définie par

$$\varphi_u(x) = u(x)\varphi(x)\left(u(\tau(x))^{-1}\right)$$

et par θ_u la transformation de $X\times G$ définie par

$$\theta_u(x,g) = (x, g(u(x))^{-1}).$$

1.2. Définition. — Soit λ une mesure positive σ -finie sur $(X \times G, \mathfrak{X} \otimes \mathcal{B}(G))$. On dit que λ vérifie l'hypothèse (P) si λ s'écrit

$$\lambda(\mathrm{d}x,\mathrm{d}g) = \mu(\mathrm{d}x)N(x,\mathrm{d}g),$$

noté $\mu \otimes N$, où :

- i) μ est une mesure de probabilité sur (X, \mathfrak{X}) ;
- ii) N est un noyau de Radon positif de (X,\mathfrak{X}) dans $(G,\mathcal{B}(G))$; i.e. pour tout $x\in X,\,N(x,.)$ est une mesure de Radon positive sur les boréliens de G, que l'on peut supposer non nulle, et pour tout borélien B de G, l'application qui à $x\in X$ associe $N(x,B)\in [0,+\infty]$ est mesurable.

REMARQUES. — Le couple (μ, N) n'est défini qu'à "densité près". Si h est une fonction mesurable strictement positive sur X telle que $\int_X h(x)\mu(\mathrm{d}x) = 1$, on peut remplacer le couple (μ, N) par le couple $(h\mu, h^{-1}N)$

Lorsque (X, \mathfrak{X}) est un espace polonais muni de sa tribu des boréliens, toute mesure positive λ sur $(X \times G, \mathfrak{X} \otimes \mathcal{B}(G))$ pour laquelle il existe une suite $(A_n)_{n\geq 0}$ de boréliens croissant vers X telle que, pour tout entier $n \geq 0$ et tout compact K de G, $\lambda(A_n \times K) < +\infty$, vérifie la propriété (P).

Théorème 1.3. — Soit λ une mesure positive σ -finie sur $X \times G$ vérifiant l'hypothèse (P). Si λ est τ_{φ} -invariante ergodique (i.e. toute fonction mesurable positive λ -presque partout τ_{φ} -invariante est λ -presque partout constante) alors :

- i) Il existe un sous-groupe fermé H de G et une application mesurable u de X dans G, avec $u(X) = \{e\}$ si H = G, tels que, pour μ -presque tout $x \in X$, $\varphi_u(x)$ est à valeurs dans H, et la mesure $\theta_u(\lambda)$ est une mesure sur $X \times H$ vérifiant l'hypothèse (P) et τ_{φ_u} -invariante ergodique.
- ii) Il existe une exponentielle χ sur H telle que

$$\theta_u(\lambda)(\mathrm{d}x,\mathrm{d}g) = \widetilde{\mu}(\mathrm{d}x) \ \chi(g) m_H(\mathrm{d}g)$$

où $\widetilde{\mu}$ est une mesure positive σ -finie, équivalente à μ , vérifiant

$$\tau(\widetilde{\mu})(\mathrm{d}x) = \chi(\varphi_u(\tau^{-1}(x)))\widetilde{\mu}(\mathrm{d}x).$$

REMARQUES. — 1) Lorsque (X, \mathfrak{X}) est un espace polonais et la mesure positive λ est finie sur les compacts de $X \times G$, la mesure positive σ -finie $\widetilde{\mu}$ n'est pas nécessairement finie sur les compacts de X.

Considérons le cas $X = \mathbb{R}/\mathbb{Z}$, $\tau : \overline{x} \mapsto \overline{x+\alpha}$, pour un nombre réel α irrationnel, $G = \mathbb{Z}$ et $\varphi : \overline{x} \mapsto 1$. La mesure

$$\lambda = \sum_{k \in \mathbb{Z}} \delta_{\overline{k}\,\alpha} * \delta_k$$

est finie sur les compacts, mais

$$\widetilde{\mu} = \sum_{k \in \mathbb{Z}} \delta_{\overline{k\alpha}}$$

ne l'est pas. Si u est une application borélienne de X dans \mathbb{Z} telle que $u(\overline{k\alpha})=k$, alors pour $\widetilde{\mu}$ -presque tout $\overline{x}\in X,\ u(\overline{x})+\varphi(\overline{x})-u(\tau(\overline{x}))=\overline{0}$ et $\theta_u(\lambda)=\widetilde{\mu}\otimes\delta_{\overline{0}}$.

2) Lorsque λ est une mesure finie, on peut se ramener à une mesure de probabilité. Si elle est τ_{φ} -invariante ergodique, alors le groupe H du théorème est nécessairement compact et l'exponentielle χ est triviale. Pour les extensions abéliennes compactes d'un système dynamique (voir [2] et [3]).

La méthode de démonstration de ce résultat permet aussi d'obtenir la généralisation du théorème de réduction cohomologique de O. Sarig [5] suivante.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

250 RAUGI (A.)

1.4. Notations. — Soient $(X, \mathcal{B}(X))$ un espace polonais muni d'une relation d'équivalence \mathfrak{S} à classes dénombrables et G un groupe LCD. On appelle \mathfrak{S} -holonomie toute application bijective bi-mesurable κ d'un borélien A de X sur un borélien B de X, vérifiant, pour tout $x \in X, (x, \kappa(x)) \in \mathfrak{S}$; le borélien A est appelé domaine de κ et noté dom (κ) . Une mesure positive σ -finie μ sur les boréliens de X est dite \mathfrak{S} -invariante si, pour toute \mathfrak{S} -holonomie κ , les restrictions des mesures $\mu \circ \kappa$ et μ au domaine de κ coïncident. Une mesure positive σ -finie μ sur les boréliens de X est dite \mathfrak{S} -ergodique si toute fonction borélienne positive sur X, μ -presque partout invariante par les holonomies, est constante μ -presque partout.

Soit Φ un \mathfrak{S} -cocycle à valeurs dans G; i.e. $\Phi:\mathfrak{S}\to G$ telle que

$$\forall (x,y), (y,z) \in \mathfrak{S}, \quad \Phi(x,y)\Phi(y,z) = \Phi(x,z).$$

En posant, pour $(x, g), (y, t) \in X \times G$,

$$((x,g_1),(y,g_2)) \in \mathfrak{S}_{\Phi} \stackrel{\text{def}}{\iff} (x,y) \in \mathfrak{S} \text{ et } g_1 = g_2\Phi(x,y)$$

on obtient une relation d'équivalence \mathfrak{S}_{Φ} sur $X \times G$.

Si Φ est un \mathfrak{S} -cocycle à valeurs dans G et u une application mesurable de X dans G, nous notons Φ_u le cocycle défini par

$$\forall (x,y) \in \mathfrak{S}, \quad \Phi_u(x,y) = u(x)\Phi(x,y)(u(y))^{-1}.$$

Nous disons qu'un \mathfrak{S} -cocycle Φ à valeurs dans G est μ -presque partout à valeurs dans un sous-groupe H si le borélien de X,

$$\{x \in X : \Phi(x,y) \in H, \forall y \in X, (x,y) \in \mathfrak{S}\}$$

est de μ -mesure 1.

Théorème 1.5. — Soit λ une mesure positive σ -finie sur $X \times G$ vérifiant les hypothèses (P). Si λ est \mathfrak{S}_{Φ} -invariante ergodique alors :

- i) Il existe un sous-groupe fermé H de G et une application mesurable u de X dans G, avec $u(X) = \{e\}$ si H = G, tels que : le cocycle Φ_u est μ -presque partout à valeurs dans H et la mesure $\theta_u(\lambda)$ est une mesure sur $X \times H$ vérifiant l'hypothèse (P) et \mathfrak{S}_{Φ_u} -invariante ergodique.
- ii) Il existe une exponentielle χ sur H telle que

$$\theta_u(m)(\mathrm{d}x,\mathrm{d}h) = \widetilde{\mu}(\mathrm{d}x)\,\chi(g)\widetilde{m}_H(\mathrm{d}g)$$

où $\widetilde{\mu}$ est une mesure positive σ -finie, équivalente à μ et telle que, pour toute \mathfrak{S} -holonomie κ et pour μ -presque tout x,

$$\frac{\mathrm{d}\widetilde{\mu}\circ\kappa}{\mathrm{d}\widetilde{\mu}}(x) = \chi\big(\Phi_u\big(\kappa(x),x\big)\big).$$