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VOLUME OF SPHERES IN DOUBLING METRIC MEASURED
SPACES AND IN GROUPS OF POLYNOMIAL GROWTH

by Romain Tessera

Abstract. — Let G be a compactly generated locally compact group and let U be a
compact generating set. We prove that if G has polynomial growth, then (Un)n∈N is a

Følner sequence and we give a polynomial estimate of the rate of decay of µ(Un+1rUn)
µ(Un)

.

Our proof uses only two ingredients: the doubling property and a weak geodesic prop-
erty that we call Property (M). As a matter of fact, the result remains true in a
wide class of doubling metric measured spaces including manifolds and graphs. As an
application, we obtain a Lp-pointwise ergodic theorem (1 ≤ p <∞) for the balls aver-
ages, which holds for any compactly generated locally compact group G of polynomial
growth.

Résumé (Volume de sphères dans les espaces métriques mesurés doublants et dans les
groupes à croissance polynomiale)

Soit G un groupe localement compact, compactement engendré et U une partie
compacte génératrice. On prouve que si G est à croissance polynomiale, alors la suite
des puissances de U forme une suite de Følner et on montre que le rapport µ(Un+1rUn)

µ(Un)

tend polynomialement vers 0. La démonstration n’utilise que deux ingrédients : le fait
qu’un groupe à croissance polynomiale est doublant, et une propriété de faible géodé-
sicité : la propriété (M). Par conséquent ce résultat s’étend à une large classe d’espaces
métriques mesurés doublants, comme les graphes et les variétés riemanniennes. Comme
application, nous obtenons un théorème ergodique presque sûr et dans Lp (1 ≤ p <∞)
pour les moyennes sur les boules d’un groupe à croissance polynomiale.
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1. Introduction

Let G be a compactly generated, locally compact (cglc) group endowed with
a left Haar measure µ. Recall that a sequence (An)n∈N of measurable subsets
of a locally compact group G is said to be Følner if for any compact set K,

µ(K ·An M An) = o
(
µ(An)

)
.

Let U be a compact generating set of G (we mean by this that
⋃
n∈N U

n = G),
not necessarily symmetric. If µ(Un) grows exponentially, it is easy to see that
the sequence (Un)n∈N cannot be Følner. On the other hand, if µ(Un) grows
subexponentially, then there exists trivially a sequence (ni)i∈N of integers such
that (Uni)i∈N is Følner. But it is not clear whether the whole sequence (Un)n∈N
is Følner. This was first conjectured for amenable groups by Greenleaf in 1969
(see [8, p. 69]), who also proved it with Emerson [7] in the abelian case, correct-
ing a former proof of Kawada [12] (see also Proposition 21). The conjecture
is actually not true for all finitely generated amenable groups since there ex-
ist amenable groups with exponential growth (for instance, all solvable groups
which are not virtually nilpotent). Nevertheless, the conjecture is still open for
groups with subexponential growth. In 1983, Pansu [17] proved it for nilpotent
finitely generated groups. In [2], Breuillard recently generalized the theorem of
Pansu, which now holds for general cglc groups of polynomial growth. In fact,
they prove that µ(Un) ∼ Cnd, for a constant C = C(U) > 0, which clearly
implies that (Un)n∈N is Følner. In this article, we prove the conjecture for all
compactly generated groups with polynomial growth. More precisely, we prove
the following theorem: there exist δ > 0 and a constant C <∞, such that

µ
(
Un+1 r Un

)
≤ Cn−δµ(Un).

Interestingly, our proof works in a much more general setting. Recall that a
metric measure space (X, d, µ) satisfies the doubling condition (or “is doubling”)
if there exists a constant C ≥ 1 such that

∀r > 0, ∀x ∈ X, µ
(
B(x, 2r)

)
≤ Cµ

(
B(x, r)

)
where B(x, r) = {y ∈ X, d(x, y) ≤ r}. Let S(x, r) denote the “1-sphere” of
center x and radius r, i.e., S(x, r) = B(x, r + 1) rB(x, r). Actually, we prove
a similar result for doubling metric measured spaces satisfying a weak geodesic
property we will call Property (M) (see 5.2). In this setting, the result becomes:
there exist δ > 0 and a constant C <∞, such that

∀x ∈ X, ∀r > 0, µ
(
S(x, r)

)
≤ Cr−δµ

(
B(x, r)

)
.

In particular, the conclusion of this theorem holds for metric graphs and Rie-
mannian manifolds satisfying the doubling condition.
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In the case of metric measured spaces, our result is somewhat optimal, since
in [21, Thm. 4.9], we build a graph X, quasi-isometric to Z2, such that there
exist 0 < a < 1, an increasing sequence of integers (ni)i∈N and x ∈ X such (1)

that
∀i ∈ N,

∣∣S(x, ni)
∣∣ ≥ cn−ai ∣∣B(x, ni)

∣∣.
Note that easier counter examples can be obtained with trees with linear growth
(see Remark 5). Moreover, we will see that our assumptions on X, that is,
Doubling Property and Property (M) (see Definition 1 below) are also optimal
in some sense.

An interesting and historical motivation (see for instance [8]) for finding Føl-
ner sequences in groups comes from ergodic theory. As a consequence of our
result, we obtain a Lp-pointwise ergodic theorem (1 ≤ p < ∞) for the balls
averages, which holds for any cglc group G of polynomial growth (see The-
orem 13). We refer to a recent survey of A. Nevo [16] for more details and
complete proofs.

2. Main results

2.1. Property (M)

Definition 1. — We say that a metric space (X, d) has Property (M) if there
exists C <∞ such that the Hausdorff distance between any pair of balls with
same center and any radii between r and r + 1 is less than C. In other words,
for all x ∈ X, for all r > 0 and for all y ∈ B(x, r+1), we have d(y,B(x, r)) ≤ C.

Proposition 2. — Let (X, d) be a metric space. The following properties are
equivalent:

1) X has Property (M).
2) X has “monotone (2) geodesics”, i.e., there exists C <∞ such that, for all

x, y ∈ X, d(x, y) ≥ 1, there exists a finite chain x0 = y, x1, . . . , xm = x

such that for 0 ≤ i < m

d(xi, xi+1) ≤ C and d(xi+1, x) ≤ d(xi, x)− 1.

3) There exists a constants C < ∞ such that for all r > 0, s ≥ 1 and
y ∈ B(x, r + s)

d
(
y,B(x, r)

)
≤ Cs.

(1) In our example, a = log 2/ log 3.
(2) This is why we call this property (M).
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Proof
1) ⇒ 2). Let x, y ∈ X be such that d(x, y) ≥ 1. Let us construct the

sequence y = x0, x1, . . . , xm = x inductively. First, by Property (M) and
since d(x, y) ≥ 1, there exists x1 ∈ B(x, d(x, y) − 1) such that d(y, x1) ≤ C.
Now, assume that we have constructed a sequence y = x0, x1, . . . , xk such that
d(xi, xi+1) ≤ C for 0 ≤ i < k, and d(xi+1, x) ≤ d(xi, x)−1. If d(xk, x) < 1, then
up to replace C by C + 1, and xk by x, the sequence x0, . . . , xk is a monotone
geodesic between x and y. Otherwise, there exists xk+1 ∈ B(x, d(x, xk)−1) such
that d(xk, xk+1) ≤ C. Clearly this process has to stop after at most [d(x, y)]

steps, so we are done.
2) ⇒ 3). Let x0 = y, x1, . . . , xm = x be a monotone geodesic from y to x.

There exists an integer k ≤ s+ 1 such that xm−k ∈ B(x, r). Hence

d
(
y,B(x, r)

)
≤ d(y, xk) ≤ Ck ≤ C(s+ 1) ≤ 2Cs

which proves the implication.
3)⇒ 1). Just take s = 1.

Invariance under Hausdorff equivalence. — Recall (see [10, p. 2]) that two metric
spaces X and Y are said Hausdorff equivalent

X ∼Hau Y

if there exists a (larger) metric space Z such that X and Y are contained in Z
and such that

sup
x∈X

d(x, Y ) <∞ and sup
y∈Y

d(y,X) <∞.

It is easy to see that Property (M) is invariant under Hausdorff equivalence.
But on the other hand, Property (M) is unstable under quasi-isometry. To
construct a counterexample, one can quasi-isometrically embed R+ into R2 such
that the image, equipped with the induced metric does not have Property (M):
consider a stairway-like curve starting from 0 and containing for every k ∈ N
a half-circle of radius 2k centered on 0. So (M) is strictly stronger than the
quasi-geodesic property (see [10, p. 7]), which is invariant under quasi-isometry:
X is quasi-geodesic if there exist two constants d > 0 and λ > 0 such that for
all (x, y) ∈ X2 there is a finite chain of points x = x0, . . . , xm = y, of X such
that

d(xi−1, xi) ≤ d, i = 1, . . . ,m,

and
m∑
i=1

d(xi−1, xi) ≤ λd(x, y).

Note that a monotone geodesic is a quasi-geodesic.
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