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Abstract. — We generalize the analysis of [14] and develop a singular pseudodif-
ferential calculus. The symbols that we consider do not satisfy the standard decay
with respect to the frequency variables. While in [14], the remainders in the symbolic
calculus were seen to be merely bounded operators on L2, whose norm was measured
with respect to some small parameter, we show here a smoothing property for the
remainders. Due to a nonstandard decay in the frequency variables, the smoothing
effect takes place in a scale of anisotropic, and singular, Sobolev spaces. Our analysis
allows to extend the results of [14] on the existence of highly oscillatory solutions to
nonlinear hyperbolic problems by dropping the compact support condition on the data.
The results are also used in our companion works [7, 9] to justify nonlinear geometric
optics with boundary amplification, which corresponds to a more singular regime than
the one considered in [14]. The analysis is carried out with either an additional real
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or periodic variable in order to cover problems for pulses or wavetrains in nonlinear
geometric optics.

Résumé (Calcul pseudodifférentiel singulier pour les trains d’ondes et les pulses)
Nous généralisons l’analyse de [14] et construisons un calcul pseudodifférentiel sin-

gulier pour des symboles ne vérifiant pas les hypothèses classiques de décroissance fré-
quentielle. Les résultats de [14] montraient que les restes du calcul symbolique étaient
des opérateurs bornés sur L2, dont la norme d’opérateur était contrôlée par rapport à
un petit paramètre. Nous démontrons ici un effet régularisant pour ces restes dans une
échelle d’espaces de Sobolev anisotropes. Notre analyse permet d’étendre les résultats
de [14] sur l’existence de solutions hautement oscillantes de problèmes hyperboliques
non-linéaires en s’affranchissant de l’hypothèse de support compact des données. Nos
résultats sont aussi utilisés dans les articles compagnons [7, 9] pour justifier un régime
d’optique géométrique non-linéaire avec amplification sur le bord. L’analyse est menée
ici avec une variable rapide réelle ou bien périodique de manière à traiter des problèmes
d’optique géométrique pour des pulses ou des trains d’ondes.

1. Introduction

Nonlinear geometric optics is devoted to the construction and the analy-
sis of highly oscillatory solutions to some partial differential equations. In the
context of hyperbolic partial differential equations, one of the main issues is
to prove existence of a solution to the highly oscillatory problem on a time
interval that is independent of the (small) wavelength. Such uniform existence
results cannot follow from a naive application of a standard existence result in
some functional space, say a Sobolev space Hs, because the sequence of initial
and/or boundary data does not remain in a fixed ball of Hs. A now classical
procedure for proving uniform existence results is to work on singular problems
with additional variables and to prove uniform energy estimates with respect
to the singular parameter. This strategy was used in [12] for the hyperbolic
Cauchy problem and adapted in [14] to hyperbolic initial boundary value prob-
lems. Energy estimates in [14] are much more difficult to obtain than in [12]
and are proved by using a singular pseudodifferential calculus(1). The operators
are pseudodifferential in the singular derivative ∂x+β ∂θ

ε . The calculus of [14] is
adapted to boundary value problems that satisfy a maximal energy estimate,
that is an L2 estimate with no loss derivative. In particular, remainders are
bounded operators on L2 whose norm is controlled with respect to some pa-
rameter γ. This parameter arises from a Laplace transform with respect to the

(1) The calculus is used partly to diagonalize the equations microlocally, and perform energy
estimates on each coordinate. As detailed in the introduction of [14], symmetry arguments
as in [12] are usually of no help in the study of boundary value problems.

tome 142 – 2014 – no 4



SINGULAR PSEUDODIFFERENTIAL CALCULUS FOR WAVETRAINS 721

time variable. Such terms of order 0 can be absorbed in the energy estimates
by choosing γ large enough.

In [6], two of the authors have studied and justified geometric optics expan-
sions with an amplification phenomenon for a certain class of linear hyperbolic
boundary value problems. For linear problems, uniform existence is no source
for concern. In the companion article [7], we extend the result of [6] to semi-
linear problems in the weakly nonlinear regime. Namely, we study solutions to
the following boundary value problems(

∂t +
d∑
j=1

Aj ∂j

)
vε +D(ε vε) vε = 0 in {xd > 0},

B(ε vε) vε = εG

Å
x′,

x′ · β
ε

ã
on {xd = 0},

where the source term G and the solution vε vanish for t < 0. One major
issue in [7] is to prove that the amplification phenomenon exhibited in [6]
combined with the nonlinearity of the zero order term D(ε vε) vε does not rule
out existence of a solution on a fixed time interval. Our strategy in [7] is to
study a singular problem for which we need to prove uniform estimates. As in
[6], the linearized problems in [7] satisfy a weak energy estimate with a loss
of one tangential derivative.(2) Such estimates with a loss of derivative were
originally proved in [5] and are optimal, as shown in [6]. The amplification of
oscillations is more or less equivalent to the loss of derivatives in the estimates.
Compared with [14], we now need to control our remainders by showing that
they are smoothing operators, otherwise we can not absorb these errors in the
energy estimates. Moreover, since the nonlinear problems of [7] are solved by a
Nash-Moser procedure where we use smoothing operators (typically frequency
cut-offs), it is crucial to extend all the results on the singular calculus of [14]
by including the following features:

– The symbols should not be assumed to be independent of the space vari-
ables outside of a compact set. Otherwise, we would face a lot of difficulties
with the smoothing procedure in the Nash-Moser iteration.

– The remainders in the calculus of [14] should be smoothing operators
when they were merely bounded operators on L2 with a small (O(γ−1),
γ large) norm in [14]. Moreover, we desire more systematic and easily
applicable criteria than in [14] for determining the mapping properties of
remainders.

As far as we checked, it seems that showing the smoothing property could be
achieved with the techniques of [14]. However, these techniques heavily use

(2) More precisely, the loss in [7] is a loss of a singular derivative ∂x + β
∂θ
ε
.
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the fact that the symbols are independent of the space variables outside of a
compact set, and a major goal here is to get rid of this assumption. We thus
adopt a different strategy that is based on a careful application of the Calderón-
Vaillancourt Theorem. Our motivation for doing so is that our symbols lack
the standard isotropic decay of pseudodifferential symbols, and this makes the
classical proofs inapplicable. The situation is even worse because some results
on adjoints or products of singular pseudodifferential operators seem not to
hold. For instance, asymptotic expansions of symbols do not hold beyond the
first term, and even the justification of the first term in the expansion depends
on the order of the operators. Our final results are thus in some ways rather
weak, but they seem to be more or less the best one can hope for in such a
singular scaling. Fortunately, the calculus is strong enough to be applicable
to a variety of geometric optics problems for both wavetrains and pulses, see,
e.g., [7].

We thus review the results of [14] by improving them along the lines de-
scribed above. For practical purposes, we have found it convenient to first prove
general results on L2-boundedness of pseudodifferential and oscillatory integral
operators. The calculus rules are then more or less “basic” applications of the
general results. We have also found it convenient to include in the same article,
the results for both the whole space and the periodic framework. Results in
the case of the whole space are used in [9] to deal with pulse-like solutions to
hyperbolic boundary value problems, while the companion article [7] is devoted
to wavetrains.

PART I

SINGULAR PSEUDODIFFERENTIAL CALCULUS FOR WAVETRAINS

2. Functional spaces

In all this article, functions may be valued in C, CN or even in the space
of square matrices MN (C) (or CN×N ). Products have to be understood in the
sense of matrices when the dimensions agree. If M ∈ MN (C), M∗ denotes the
conjugate transpose of M . The norm of a vector x ∈ CN is |x| := (x∗ x)1/2.
If x, y are two vectors in CN , we let x · y denote the quantity

∑
j xj yj , which

coincides with the usual scalar product in RN when x and y are real.
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