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TWO DIMENSIONAL WATER WAVES IN HOLOMORPHIC
COORDINATES II: GLOBAL SOLUTIONS

by Mihaela Ifrim & Daniel Tataru

Abstract. — This article is concerned with the infinite depth water wave equation in
two space dimensions. We consider this problem expressed in position-velocity potential
holomorphic coordinates, and prove that small localized data leads to global solutions.
This article is a continuation of authors’ earlier paper [8].

1. Introduction

We consider the two dimensional infinite depth water wave equations with
gravity but without surface tension. This is governed by the incompressible
Euler’s equations with boundary conditions on the water surface. Under the
additional assumption that the flow is irrotational the fluid dynamics can be
expressed in terms of a one-dimensional evolution of the water surface coupled
with the trace of the velocity potential on the surface.

Texte reçu le 1er septembre 2015, accepté le 10 septembre 2015.

Mihaela Ifrim, Department of Mathematics, University of California at Berkeley •
E-mail : ifrim@math.berkeley.edu
Daniel Tataru, Department of Mathematics, University of California at Berkeley •
E-mail : tataru@math.berkeley.edu
2010 Mathematics Subject Classification. — 35Q35, 76B15.
Key words and phrases. — Gravity waves, normal form, wave packets, modified energy
method.
The first author was supported by the Simons Foundation.
The second author was partially supported by the NSF grant DMS-1266182 as well as by the
Simons Foundation.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2016/369/$ 5.00
© Société Mathématique de France



370 M. IFRIM & D. TATARU

This problem was previously considered by many other authors. The local
in time existence and uniqueness of solutions was proved in [14, 21, 17], both
for finite and infinite depth. Later, Wu [19] proved almost global existence for
small localized data. Very recently, global results for small localized data were
independently obtained by Alazard-Delort [3] and by Ionescu-Pusateri [11].
Extensive work was also done on the same problem in three or higher space
dimensions, and also on related problems with surface tension, vorticity, fi-
nite bottom, etc. Without being exhaustive, we list some of the more recent
references [2, 1, 5, 6, 7, 12, 4, 13, 15, 16, 18, 20, 22].

An essential choice in any approach to this problem is that of the coordinates
used. The citations above largely rely on either Eulerian or Lagrangian coordi-
nates. Instead, the present article relies on holomorphic coordinates, which were
originally introduced by Nalimov [14]; these are briefly described below. In the
earlier article [8], using holomorphic coordinates, we revisited this problem in
order to provide a new, self-contained approach, which considerably simplified
and improved on many of the results mentioned above. Our results included:

(i) local well-posedness in Sobolev spaces, improving on previous regularity
thresholds, e.g., those in [2].

(ii) cubic lifespan bounds for small data. These are proved using a modified
energy method, first introduced in the authors’ previous article [9]. The idea
there is that instead of trying to transform the equation using the normal form
method, which does not work well in quasilinear settings, one can produce
quasilinear energy functionals, which are conserved to cubic order.

(iii) almost global well-posedness for small localized data, providing a
shorter, simpler alternative to Wu’s approach in [19], with lower regularity
thresholds.

Here we improve the result in (iii) to a global statement, improving and
simplifying the earlier results of Alazard-Delort [3] and by Ionescu-Pusateri [11]
in several ways; see the discussion following our main theorem.

We first recall the set-up and the equations. We denote the water domain at
time t by Ω(t), and the water surface at time t by Γ(t). We think of Γ(t) as being
asymptotically flat at infinity. Rather than working in cartesian coordinates and
the Eulerian setting, we use time dependent coordinates defined via a conformal
map F : H → Ω(t), where H is the lower half plane, H := {α+ iβ : β < 0}.
We also have F (R) = Γ(t). We call these the holomorphic coordinates.

The real variable α is then used to parametrize the free surface Γ(t). We
say that a function of α is holomorphic if its Fourier transform is supported
in (−∞, 0]. They can be described by the relation Pf = f , where the projector
operator P to negative frequencies can be defined using the Hilbert transform
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H as
P :=

1

2
(I − iH).

Our variables (Z,Q) are functions of t and α which represent the position of
the water surface Γ(t), respectively the holomorphic extension of the velocity
potential restricted to Γ(t), expressed in the holomorphic coordinates. In view
of our choice of coordinates, it is natural to consider the evolution of (Z,Q)

within the closed subspace of holomorphic functions within various Sobolev
spaces.

In position-velocity potential holomorphic coordinates the equations have
the form 

Zt + FZα = 0

Qt + FQα − i(Z − α) + P

[
|Qα|2

J

]
= 0,

where

F := P

[
Qα − Q̄α

J

]
, J := |Zα|2.

For the derivation of the above equations we refer the reader to [8], Appendix A.
With the substitution W := Z − α they become

(1.1)


Wt + F (1 +Wα) = 0

Qt + FQα − iW + P

[
|Qα|2

J

]
= 0,

where

F = P

[
Qα − Q̄α

J

]
, J = |1 +Wα|2.

We can also differentiate and rewrite the system in terms of the diagonal
variables

(W, R) :=

(
Wα,

Qα
1 +Wα

)
.

This yields the self-contained system

(1.2)


Wt + bWα +

(1 + W)Rα
1 + W̄

= (1 + W)M

Rt + bRα = i

(
W − a
1 + W

)
,

where the real advection velocity b is given by

b := P

[
Qα
J

]
+ P̄

[
Q̄α
J

]
,

and the real frequency-shift a is

a := i
(
P̄
[
R̄Rα

]
− P

[
RR̄α

])
.
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