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TORSION AND SYMPLECTIC VOLUME
IN SEIFERT MANIFOLDS

BY LAURENT CHARLES & LISA JEFFREY

ABsTRACT. — For any oriented Seifert manifold X and compact connected Lie group
G with finite center, we relate the Reidemeister density of the moduli space of rep-
resentations of the fundamental group of X into G to the Liouville measure of some
moduli spaces of representations of surface groups into G.

REsuME (Torsion et volume symplectique des variétés de Seifert). — Pour toute
variété de Seifert orientée X et tout groupe de Lie compact connexe G de centre fini,
nous calculons la densité de Reidemeister de 1’espace des modules des représentations
du groupe fondamental de X dans G en fonction de la mesure de Liouville de certains
espaces de modules de représentations de groupes de surfaces.

1. Introduction

For any Lie group G and manifold Y, the moduli space M(Y) of conju-
gacy classes of representations of 71 (Y) in G, has natural differential geometric
structures. If ¥ is a closed oriented surface, M(X) has a symplectic stucture
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defined via intersection pairing [1], [4]. More generally, if ¥ is a compact ori-
ented surface and u € M(9X), the subspace M (X, u) of M(XZ) consisting of
the representations restricting to v on the boundary has a natural symplec-
tic structure. If X is a closed 3-dimensional oriented manifold, M(X) has a
natural density pux defined from Reidemeister torsion [16].

In this article, we relate these structures for X any oriented Seifert manifold
and ¥ a convenient oriented surface embedded in X. We will prove that when
G is compact with finite center, the subspace M%(X) C M(X) of irreducible
representations, is a smooth manifold covered by disjoint open subsets O,
such that each O, identifies with M°(2, u,,) for some u, € M(9%). Further-
more, on each U, the canonical density px identifies, up to some multiplicative
constant depending on «, with the Liouville measure of the symplectic structure
of M°(Z,uy).

Our main motivation is the Witten’s asymptotic conjecture, which predicts
that the Witten-Reshetikhin-Turaev invariant of a 3-manifold X has a precise
asymptotic expansion in the large level limit. This expansion is a sum of
oscilatory terms, whose amplitudes are function of the Reidemeister volume of
the components of M(X). In the case where X is a Seifert manifold, some of
these amplitudes are actually function of the symplectic volumes of the moduli
spaces M° (2, u), [13], [3]. So a relation between Reidemeister and symplectic
volumes was expected. At a more general level, it is known that the Chern-
Simons theory on a Seifert manifold can be interpreted as two-dimensional
Yang-Mills theory [2].

Let us state our results with more detail and then discuss the related liter-
ature.

Statement of the main result. — The Seifert manifolds we will consider are the
oriented closed connected three manifold equipped with a locally free circle
action. Any such manifold may be obtained as follows. Let X be an oriented
compact surface with n > 1 boundary components Ci,...,C,. Let D be the
standard closed disk of C. Let ¢; be an orientation reversing diffeomorphism
from 0D x S' to C; x S'. Let X be the manifold obtained by gluing n copies
of D x S* to ¥ x S! through the maps ;. We have [¢;(0D)] = —p;[Ci] + ¢:[S?]
in H;(C; x S) where p;, ¢; are two relatively prime integers. We assume that
p; > 1 for all 4.

Let G be a compact connected Lie group with finite center. For Y = X, ¥,
C; or S, we denote by M(Y') (resp. M°(Y)) the set of representations (resp.
irreducible representations) of 7;(Y) in G up to conjugation. Since C; and S*
are oriented circles, we can identify M(C;) and M(S') with the set C(G) of
conjugacy classes of G. For any u € C(G)", we denote by M%(X,u) the subset
of M%(X) consisting of the representations whose restriction to each C; is u;.
Recall that M°(X, u) is a smooth symplectic manifold.
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For any (u,v) € C(G)"!, we denote M°(X,u,v) the subset of M%(X)
consisting of representations whose restriction to each C; is u; and to S is v.
Let P be the subset of C(G)"*! consisting of the (u,v) such that M%(X,u,v) is
non empty.

THEOREM 1.1. — MO (X) is a smooth manifold, whose components may have
different dimensions. For any [p] € M°(X), the tangent space Tj, M°(X) is
canonically identified with H'(X,Ad p) where Adp is the flat vector bundle
associated to p via the adjoint representation. Furthermore, P is finite and for
any (u,v) € P, M°(X,u,v) is an open subset of M°(X) and the restriction
map Ry, from M°(X, u,v) to M°(Z,u) is a diffeomorphism.

For any irreducible representation p of m1(X) in G, the homology groups
Hy(X,Ad p) and Hs(X,Ad p) are trivial. By Poincaré duality, Ho(X, Ad p) is
the dual of H;(X,Adp). So the Reidemeister torsion of Adp is a non van-
ishing element of (det Hy(X,Ad p))_2 well-defined up to sign. Consequently,
the inverse of the square root of the torsion is a density of H!(X, Ad p). Since
H'(X,Ad p) identifies with the tangent space of M°(X) at p, we define in this
way a density px on M%(X).

For any u € C(G) and [p] € M°(Z,u), the tangent space T, )M°(Z,u) is
identified with the kernel of the morphism H'(¥,Adp) — H' (0%, Ad p). The
symplectic product of T[p]MO(E,u) is induced by the intersection product
of HY(X,Adp) with H*(X,0%,Adp). We denote by u, the corresponding
Liouville measure of M%(X, u).

As a last definition, let A : C(G) — R be the function given by

A(u) = |dety, (Ad, —id)]"/?,

where g is any element in the conjugacy class v and Hy is the orthocomplement
of ker(Ady —id). Equivalently, let t be the Lie algebra of a maximal torus of G,
R C t* be the corresponding set of real roots and R4 C R be a set of positive
roots. Then for any X € t,

A= [ 2sin(ra().

a€R; a(X)#0
THEOREM 1.2. — For any (u,v) € P, we have on M°(X,u,v)

- Ay;') .
rx = <H (dimG—dimui)/2> Ry obus

i=1 L

where R, ,, is the restriction map from M°(X,u,v) to M°(Z,u) and for each
i, r; is any inverse of q; modulo p;, and u;' € C(G) is the conjugacy class
containing the g™ for g € u;.
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Several definitions require an invariant scalar product on the Lie algebra
of G: the symplectic structure of M%(X,u), the Poincaré duality between
Hy(X,Adp) and Hy(X,Adp) and the Reidemeister torsion of Adp. Our im-
plicit convention is to choose the same invariant scalar product each time.

During the proof, we will prove interesting intermediate results:

- for any irreducible representation p of m1(X) in G, the cohomology
groups H'(X,Adp) and H?(X,Adp) both identify naturally with the
kernel of the restriction morphism H'(X, Ad p) — H' (9%, Ad p).

- by these identifications, the intersection product of H'(X,Ad p) with
H?(X,Adp) is sent to the intersection product of H'(X,Adp) with
HY(X,0%, Ad p).

- the Reidemeister torsion of Adp — X is equal to C~2dett where
v+ Hi(X,Adp) — H(X,Adp) is the map induced by the previous
identifications and C' is the factor appearing in Theorem 1.2.

This results are respectively proved in Sections 4, 5 and 6. Theorem 1.2 is
proved in Section 7 and Theorem 1.1 in Section 3.2.

Related results in the litterature. — Witten [17] proved that for S a closed
oriented surface, the canonical density ug of M?(S) defined from Reidemeister
torsion, is the Liouville measure of the natural symplectic structure of M°(S).
He also extended this result to surfaces with boundary. We tried to deduce
Theorem 1.2 from this by relating the torsions of Adp — X and Adp — %,
without any success. Our actual proof does not use Witten’s result.

Witten also computed explicitely the volumes [ MO ) Hws cf. [17], For-
mula 4.114. For G = SU(2) and non central conjugacy classes u;, Park [12]
adapted the Witten’s method to compute fMO(X%U) wx, X being our Seifert
manifold. Computing the volume of M°(X,u,v) with Theorem 1.2 and Wit-
ten’s formula, we can extend Park’s result to any compact connected Lie group
G with finite center and any conjugacy classes u;.

McLellan [8] proved a result similar to Theorem 1.2 for G = U(1). To do
this, he introduced a Sasakian structure on X and used a computation of the
corresponding analytic torsion [14]. We will explain in Section 8 how we can
recover McLellan’s result by adapting our method, providing an elementary
proof.

2. The Seifert manifold X
Let g,n,p1,q1,...,Pn, ¢, be integers such that
(1) g=>0, n>1 and Vi, p;, q; are coprime and p; > 1.

To such a familly we associate the following manifold X. Let ¥ be a compact
oriented surface with genus g and n boundary components denoted by C4,...,C,.
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Let D be a closed disk and for any i, let ¢; : 9D xS' — C;x S! be an orientation
reversing diffeomorphism such that we have in H;(S* x C;),

(2) [0i(8D)] = —pi[Ci] + @i[ S,

where 9D and C; are oriented as boundaries of D and X respectively. Then
X is obtained by gluing n copies of D x S! to ¥ x S! along its boundary through
the maps ¢;,

(3) X = (2 x S Up,u-tg, (D x 81

By construction ¥ x S! is a submanifold of X. In the sequel we often consider
¥ and S! as submanifolds of X by identifying ¥ with ¥ x {y} and S! with
{z} x 81, where z and y are some fixed points of ¥ and S! respectively.

The above definitions are all what we need for this article. Nevertheless, it is
interesting to understand this in the context of Seifert manifolds. First, if X is
obtained as previously, we can extend the S'-action on ¥ x S! to X, so that
for any i, the action on the i-th copy of D x S! is free if p; = 1 and otherwise
it has one exceptional orbit with isotropy Z,,. Conversely, consider any three
dimensional closed connected oriented manifold Y equipped with an effective
locally free action of S'. Then choose n > 1 orbits O4,..., O, of Y including
all the exceptional ones. Let T3, ---, T}, be disjoint saturated open tubular
neighborhoods of the Oq,..., O, respectively. Let ¥ be any cross-section of
the action on Y \ (I3 U---UT,). For any i, set C; = (0X) N T; and define p;
as the order of the isotropy group of O; and ¢; so that [C;] = ¢;[0;] in Hy(T}),
where C; is oriented as the boundary of ¥ and O; by the S!-action. Let X be
any manifold associated to the data X, (p1,¢1), .-, (Pn,qn) as in (3). Then
Y is diffeomorphic to X, cf. [5], Theorem 1.5 or the Section 1 of [10] for more
details. We can even choose the diffeomorphism between Y and X so that it
commutes with the S'-action and fixes X. The collection

(ga (p1,Q1)a T (pna qn))

is called the unnormalized Seifert invariant of Y.

3. Character space of a Seifert manifold

Notations. — Let G be a Lie group. For any connected topological space Y,
we denote by M(Y) the set of conjugacy classes of representations of 71 (Y")
into G®. A representation p : m(Y) — G is said to be irreducible if the
centraliser of p(71(Y")) is reduced to the center of G. We denote by M°(Y) the
subset of M(Y) consisting of conjugacy classes of irreducible representations.

1. A representation of 71 (Y) into G is a group morphism from 71 (Y) to G. Two repre-
sentations p, p’ are conjugate if there exists g € G, such that p’(h) = gp(h)g™ !, Vh € G.
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