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ON ISOPERIMETRIC INEQUALITY IN ARAKELOV GEOMETRY

by Huayi Chen

Abstract. — We establish an isoperimetric inequality in an integral form and deduce
a relative version of Brunn-Minkowski inequality in the Arakelov geometry setting.

Résumé (Sur l’inégalité isopérimétrique en géométrie d’Arakelov). — On établit une
inégalité isopérimétrique sous une forme d’intégration dans le cadre de géométrie
d’Arakelov et en déduit une version relative de l’inégalité de Brunn-Minkowski dans
le même cadre.

1. Introduction

The isoperimetric inequality in Euclidean geometry asserts that, for any
convex body ∆ in Rd, one has
(1) vol(∂∆)d ≥ dd vol(B) vol(∆)d−1,
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where B denotes the closed unit ball in Rd. From the point of view of convex ge-
ometry, the isoperimetric inequality can be deduced from the Brunn-Minkowski
inequality: for two Borel subsets A1 and A2 in Rd, one has

(2) vol(A0 +A1)1/d ≥ vol(A0)1/d + vol(A1)1/d,

where
A0 +A1 := {x+ y|x ∈ A0, y ∈ A1}

is the Minkowski sum of A0 and A1. The proof consists of taking A0 = ∆ and
A1 = εB in (2) with ε > 0 and letting ε tend to 0. We refer readers to [35] for
a presentation on the history of the isoperimetric inequality and to page 1190
of loc. cit. for more details on how to deduce (1) from (2). The same method
actually leads to a lower bound for the mixed volume of convex bodies:

(3) vold−1,1(∆0,∆1)d ≥ vol(∆0)d−1 · vol(∆1),

where ∆0 and ∆1 are two convex bodies in Rd and vold−1,1(∆0,∆1) is the
mixed volume of index (d− 1, 1), which is equal to

lim
ε→0+

vol(∆0 + ε∆1)− vol(∆0)
εd

.

We refer readers to the work of Minkowski [31] for the notion of mixed volumes
in convex geometry. See [8, § 7.29] for more details.

Note that (3) is one of the inequalities of Alexandrov-Fenchel type for mixed
volumes, which is actually equivalent to Brunn-Minkowski inequality (see for
example [37, § 7.2] for a proof). Note that the above inequalities in convex
geometry are similar to some inequalities of intersection numbers in algebraic
geometry. By using toric varieties, Teissier [38] and Khovanskii [13, § 4.27]
have given proofs of the Alexandrov-Fenchel inequality by using the Hodge
index theorem.

In the arithmetic geometry setting, Bertrand [6, § 1.2] has established a
lower bound for the height function on an arithmetic variety, and interpreted
it as an arithmetic analogue of the isoperimetric inequality. In [15], the author
has proposed the notion of positive intersection product in Arakelov geometry
and proved an analogue of the isoperimetric inequality in the form of (3), by
using the arithmetic Brunn-Minkowski inequality established by Yuan [40].

The purpose of this article is to propose a relative version of the arithmetic
isoperimetric inequality and Brunn-Minkowski inequality as follows by taking
into account the relative structure of arithmetic varieties with respect to an
arithmetic curve. We refer to Theorems 3.5, 3.3, 4.1 and 4.5 for the proof and
for various refined forms of the statement.

Theorem 1.1. — Let K be a number field and X be a geometrically integral
projective scheme of dimension d ≥ 1 over SpecK. Let D0 and D1 be nef
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adelic R-Cartier divisors on X such that D0 and D1 are big. Then one has

(4) (d+ 1)d̂eg(Dd

0 ·D1) ≥ d
(

deg(Dd
1)

deg(Dd
0)

)1/d

d̂eg(Dd+1
0 ) + deg(Dd

0)
deg(Dd

1)
d̂eg(Dd+1

1 ).

If (Di)ni=1 is a family of nef adelic R-Cartier divisors such that D1, . . . , Dn are
big, then one has

(5) d̂eg((D1 + · · ·+Dn)d+1)
deg((D1 + · · ·+Dn)d) ≥ ϕ(D1, . . . , Dn)−1

n∑
i=1

d̂eg(Dd+1
i )

deg(Dd
i )

,

where

(6) ϕ(D1, . . . , Dn) := d+ 1− ddeg(Dd
1)1/d + · · ·+ deg(Dd

n)1/d

deg((D1 + · · ·+Dn)d)1/d .

Compared to the direct arithmetic analogue of the Brunn-Minkowski in-
equality (see [40, Theorem B]), the inequality (5) distinguishes the contribution
of the geometric structure of the R-Cartier divisors D1, . . . , Dn.

In the particular case where d = 2 (that is, whereX is an arithmetic surface),
the inequality (4) becomes a form of the arithmetic Hodge index inequality

2d̂eg(D0 ·D1) ≥ deg(D1)
deg(D0) d̂eg(D2

0) + deg(D0)
deg(D1) d̂eg(D2

1),

established in [17, Theorem 4.12], which is equivalent to the arithmetic Hodge
index theorem of Faltings [19] and Hriljac [24], since the above inequality is
equivalent to (

D0

deg(D0) −
D1

deg(D1)

)2

≤ 0.

We refer readers to [17, Corollary 4.14 and Remark 4.15] for a comparison of
different forms of the statement. Similarly to [17], we also use the interpretation
of the arithmetic self-intersection number of a nef and big adelic R-Cartier
divisor D as the integral of a concave function on the Okounkov body ∆(D)
of the R-Cartier divisor D, which is a convex body in Rd. However the proof
of Theorem 1.1 follows a strategy which is different from the way indicated
in [17]. In fact, in [17] the author has introduced for any couple (∆1,∆2) of
convex bodies in Rd, a number ρ(∆1,∆2) (called the correlation index of ∆1
and ∆2) which measures the degree of uniformity in the Minkowski sum ∆1+∆2
of the sum of two uniform random variables1 valued in ∆1 and ∆2, respectively.

1. For any convex body ∆ ⊂ Rd, a Borel probability measure on Rd is called the uniform
distribution on ∆ if it is absolutely continuous with respect to the Lebesgue measure, and the
corresponding Radon-Nikodym density is 1/ vol(∆), where vol(∆) is the Lebesgue measure
of ∆; a random variable valued in Rd is said to be uniformly distributed in ∆ if it follows
this measure as its probability law.
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The inequality

d̂eg((D1 +D2)d+1)
vol(∆(D1) + ∆(D2)) ≥ ρ(∆(D1),∆(D2))−1

(
d̂eg(Dd+1

1 )
vol(∆(D1)) + d̂eg(Dd+1

2 )
vol(∆(D2))

)
has been established for any couple (D1, D2) of nef and big adelic R-Cartier
divisors on X, and it has been suggested that the estimation of the correlation
index ρ(∆(D1),∆(D2)) should lead to more concrete inequalities which are
similar to (5). However, the main point in this approach is to construct a suit-
able correlation structure between two random variables which are uniformly
distributed in ∆(D1) and ∆(D2) such that the sum of the random variables is
as uniform as possible in the Minkowski sum ∆(D1) + ∆(D2). For example,
we can deduce from a work of Bobkov and Madiman [7] the following uni-
form upper bound (where we choose independent random variables) (see [17,
Proposition 2.9])

ρ(∆(D1),∆(D2)) ≤
(

2d
d

)
.

This upper bound is larger than ϕ(D1, D2), the latter being clearly bounded
from above by d+ 1.

The strategy of this article is inspired by the works of Knothe [28] and
Brenier [11, 12] on measure preserving diffeomorphisms between two convex
bodies (see also the works of Gromov [22], Alesker, Dar and Milman [2] for
more developments of this method and for applications in Alexandrov-Fenchel
type inequalities in the convex geometry setting, and the memoir of Barthe [3]
for diverse applications of this method in functional inequalities). Given a
couple (∆0,∆1) of convex bodies in Rd, one can construct a C1 diffeomorphism
f : ∆0 → ∆1 which transports the uniform probability measure of ∆0 to that
of ∆1; that is, the determinant of the Jacobian Jf is constant on the interior
of ∆0. This diffeomorphism is not unique: in the construction of Knothe, the
Jacobian Jf is upper triangular, while in the construction of Brenier, Jf is
symmetric and positive definite.

If Z0 is a random variable which is uniformly distributed in ∆0, then Z1 :=
f(Z0) is uniformly distributed in ∆1. One may expect that the random variable
Z0 + Z1 follows a probability law which is close to the uniform probability
measure on ∆0+∆1. In fact, the random variable Z0+Z1 can also be expressed
as Z0+f(Z0). Its probability law identifies with the direct image of the uniform
probability measure on ∆0 by the map Id +f , admitting Id +Jf as its Jacobian,
the determinant of which can be estimated in terms of the determinant of Jf .
In the case where Id +f is injective (for example the Knothe map), this lower
bound leads to the following upper bound for the correlation index

(7) ρ(∆0,∆1) ≤ vol(∆0 + ∆1)
(vol(∆0)1/d + vol(∆1)1/d)d

.
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By this method we obtain a weaker version of inequality (5) in the case where
n = 2 by replacing ϕ(D1, D2) with

vol(D1 +D2)
(vol(D1)1/d + vol(D2)1/d)d

.

This function is, in general, not bounded when D1 and D2 vary.
The main idea of the article is to use an infinitesimal variant of the above

argument. Instead of considering the map Id +f : ∆0 → ∆0 + ∆1, we consider
Id +εf : ∆0 → ∆0 + ε∆1 for ε > 0 sufficiently small, and use it to establish an
isoperimetric inequality in an integral form as follows (see Theorem 3.1 infra).

Theorem 1.2. — Let G0 and G1 be two Borel functions on ∆0 and ∆1, re-
spectively. We assume that they are integrable with respect to the Lebesgue
measure. Suppose given, for any ε ∈ [0, 1], an almost everywhere non-negative
Borel function Hε on ∆0 + ε∆1 such that

∀ (x, y) ∈ ∆0 ×∆1, Hε(x+ εy) ≥ G0(x) + εG1(y).

Then the following inequality holds

lim inf
ε→0+

∫
∆0+ε∆1

Hε(z)dz −
∫

∆0
G0(x)dx

ε

≥ d
(

vol(∆1)
vol(∆0)

)1/d ∫
∆0

G0(x)dx+ vol(∆0)
vol(∆1)

∫
∆1

G1(y)dy.

By this method we obtain a relative form of the arithmetic isoperimetric
inequality as in (4) and then deduce the arithmetic relative Brunn-Minkowski
inequality (5) following the classic procedure of deducing the Brunn-Minkowski
inequality from the isoperimetric inequality. Note that this does not signify that
we improve inequality (7) by replacing the right-hand side of the inequality with

d+ 1− dvol(∆0)d/1 + vol(∆1)1/d

vol(∆0 + ∆1)1/d .

For example, it remains an open question to determine whether the correlation
index ρ(∆0,∆1) is always bounded from above by d+ 1.

Finally, I would like to cite several refinements of the Brunn-Minkowski
inequality in convex geometry, where the results are also expressed in a relative
form similarly to (5), either with respect to an orthogonal projection on a
hyperplane [23] or in terms of a comparison between the volume and the mixed
volume [20] in the style of Bergstrom’s inequality [4]. It is not excluded that
the method presented in this article will bring new ideas to the research efforts
in these directions.

The article is organized as follows. In the second section, we recall the no-
tation and basic facts about adelic R-Cartier divisors. In the third section, we
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