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EXPLICIT LINEARIZATION OF ONE-DIMENSIONAL GERMS
THROUGH TREE-EXPANSIONS

by Frédéric Fauvet, Frédéric Menous & David Sauzin

Abstract. — We explain Écalle’s “arbomould formalism” in its simplest instance,
showing how it allows one to give explicit formulas for the operators naturally attached
to a germ of holomorphic map in one dimension. When applied to the classical lin-
earization problem of non-resonant germs, which contains the well-known difficulties
due to the so-called small divisor phenomenon, this elegant and concise tree formalism
yields compact formulas, from which one easily recovers the classical analytical results
of convergence of the solution under suitable arithmetical conditions on the multiplier.
We rediscover this way Yoccoz’s lower bound for the radius of convergence of the lin-
earization and can even reach a global regularity result with respect to the multiplier
(C1-holomorphy) which improves on Carminati-Marmi’s result.

Résumé (Linéarisation explicite de germes unidimensionnels par développement en
arbres). — Nous expliquons le formalisme des « arbomoules » d’Écalle dans le cas le
plus simple et montrons comment il permet d’obtenir des formules explicites pour les
opérateurs naturellement associés à un germe d’application holomorphe en une dimen-
sion. Dans le cadre du problème classique de la linéarisation des germes non résonants,
qui contient la difficulté bien connue due au phénomène des petits diviseurs, ce forma-
lisme élégant et concis reposant sur des arbres fournit des formules compactes, dont
on déduit aisément les résultats analytiques classiques de convergence de la solution
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moyennant des conditions arithmétiques appropriées sur le multiplicateur. Nous re-
trouvons de cette façon la borne inférieure due à Yoccoz pour le rayon de convergence
de la linéarisation et obtenons même un résultat de régularité globale par rapport au
multiplicateur (C1-holomorphie) qui améliore un résultat de Carminati et Marmi.

1. Introduction

The purpose of this article is twofold:
– to expound J. Écalle’s “arbomould formalism” by illustrating it on the lin-
earization problem for holomorphic germs in one complex dimension—this
amounts to a novel approach to formal linearization by means of a powerful
and elegant combinatorial machinery,

– to show how this allows one to find again the classical analytic results on the
convergence of the formal linearization by Kœnigs, Siegel, Bruno, Yoccoz,
and even improve on Carminati-Marmi’s result on the regularity with respect
to the multiplier.
The classification of diffeomorphisms near fixed points is one of the starting

points for Poincaré’s theory of normal forms and has its roots in 19th century
mathematics, with E. Schröder and G. Kœnigs’s works on the linearization
problem in one complex dimension (see e.g., [25]). The problem consists in
finding a conjugacy between a map g : z 7→ qz + O(z2) holomorphic near the
origin and its linear part z 7→ qz, assuming that the multiplier q is non-zero.
One thus looks for an invertible map z 7→ h(z) such that g ◦ h(z) = h(qz) (i.e.,
the inverse of h should satisfy the Schröder functional equation). At a formal
level, there is a solution as soon as q is not a root of unity, i.e., there is a formal
linearization h(z) ∈ C[[z]] in that case, and the Kœnigs linearization theorem
asserts its convergence whenever |q| 6= 1.

When |q| = 1, things are much more delicate because the recursive expres-
sions available for the coefficients of the formal linearization h involve denom-
inators of the form qn − 1 with any n ≥ 1. In the so-called resonant case,
namely when q is a root of unity, linearization is in fact generically not even
possible at the level of formal series, and the classification of resonant diffeo-
morphisms leads to Gevrey divergent series and questions of summability and
resurgence (see e.g., [10]). For q = e2πiω with ω real and irrational, we are faced
with the so-called “small divisor problem”, because of the arbitrary smallness of
the quantities qn − 1 present in the denominators, and this calls for a suitable
number-theoretic hypothesis on ω in order to prove that h(z) is analytic, as
shown by H. Cremer, C. L. Siegel, A. D. Bruno and J.-C. Yoccoz.

The article [10] proposed a totally new approach to deal with general sin-
gularities of analytic dynamical systems with discrete or continuous time, in
any dimension, with an array of techniques to cover the most general situations
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where the complications due to resonances and small denominators coexist, but
this work has not really been assimilated by the dynamical systems commu-
nity. In that article, J. Écalle introduced the key concept of “arborification,”
according to which the formal series first expressed as “mould expansions” have
to be reencoded by expansions over families of trees.

In the present paper, we explain the basics of Écalle’s tree formalism and
show how it leads to an explicit formula for the conjugacy h(z). Writing the
Taylor expansion of the holomorphic germ g in the form g(z) = q(z + a1z

2 +
a2z

3 + · · · ), we shall obtain

h(z) = z +
∑

T

γT

( ∏

σ∈VT

aNT (σ)

q‖Tree(σ,T )‖ − 1

)
z‖T‖+1,

where the summation is performed over trees T whose vertices σ are decorated
by positive integers NT (σ) and the coefficients γT are non-negative rational
numbers to be defined in due time; the product is over all the vertices of the
given tree T , the notation ‖ · ‖ indicating the sum of the decorations of a tree
and Tree(σ, T ) denoting the subtree of T “rooted at σ”.

In fact, Écalle’s formalism will give more: it is the composition operator itself
ϕ ∈ C[[z]] 7→ ϕ ◦ h ∈ C[[z]] which can be represented as the sum of a formally
summable family of explicit elementary differential operators. This is related to
the idea, due to A. Cayley [7], that trees are the relevant combinatorial objects
to deal with the composition of differential operators.(1)

All the precise definitions are given below in a self-contained way, and it is
in fact one of the objectives of the present text to clarify the notions intro-
duced by Écalle, connecting them with well-known combinatorial objects and
constructions, proposing on the way quite a few innovations in the notations
and the presentation of the concepts with respect to to the existing literature.
An originality of our presentation is that we arrive directly at the tree represen-
tation of h or of its composition operator, without constructing a preliminary
mould expansion and then passing through the process of arborification. In this
sense, the first part of the paper (Sections 3–6) can be considered as a lightened
introduction to Écalle’s formalism, and the interested reader can pursue with
[12] and the references therein to learn more about the algebraic structures
underlying arborification.

Next, in the second part of the paper (Sections 7–11), we show that the ex-
plicit expression of h obtained in the first part can be efficiently used to prove

1. The use of trees in small divisor problems can be traced back to Eliasson’s 1988 preprint,
published as [11], containing the direct proof of the convergence of the Lindstedt series in the
(more difficult) context of KAM theory. Let us also mention that, for the multidimensional
Siegel problem, another tree formalism was used in [3], whose formulas (4.12) and (4.13) are
reminiscent of the formula obtained by Écalle’s tree formalism.
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its analyticity when q = e2πiω and ω satisfies Bruno’s arithmetic condition (re-
lying on an arithmetical lemma due to Davie, as in [4]), finding again Yoccoz’s
lower bound for the radius of convergence of h.

It also gives us access to a new result on the monogenic dependence of h with
respect to the multiplier q, in the spirit of [15]. The first result of that kind was
proved by C. Carminati and S. Marmi in [20]. The idea consists in considering
all the ω’s satisfying a uniform Bruno condition and constructing a closed
subsetK of C such that the map q ∈ K 7→ h ∈ B is C1-holomorphic, where B is
a suitable Banach space of functions of z. When it comes to C1-holomorphy,
our method is quite different from that of [20] and gives an improvement for
the radius of the disk in the z-plane which determines the Banach space B that
one can take.

We tried to make the paper as self-contained as possible and hope it will
constitute an accessible entry to some of the beautiful and far reaching con-
structions of Écalle, while yielding original proofs of non trivial dynamical
results and paving the way for further works.

2. Linearization of diffeomorphisms in dimension 1

Let us review the dynamical setting and fix some notation. We denote by

(1) G̃ :=
{
g(z) =

∑

n≥1

bnz
n ∈ C[[z]] | b1 6= 0

}

the group of formal diffeomorphisms in one dimension, the group operation
being the composition of formal series without constant term, with the notation
g◦(−1) for the inverse of an element g. The coefficient b1 of a given g ∈ G̃ is called
its multiplier ; the formal diffeomorphisms with multiplier 1 form a subgroup
of G̃ that we denote by G̃1. The group of germs of holomorphic diffeomorphisms
in one dimension can be identified with a subgroup G of G̃ , in which tangent-
to-identity convergent series also form a subgroup:

(2) G :=
{
g ∈ G̃ | g ∈ C{z}

}
, G1 := G ∩ G̃1.

The local theory of holomorphic dynamics is concerned with the iteration of
elements of G and the description of the conjugacy classes of G . The rotations
Rq ∈ G defined by

(3) Rq(z) := qz, for q ∈ C∗

display the simplest possible dynamics: the kth iterate of Rq is Rqk (for any
k ∈ Z). One is thus interested in the

Holomorphic Linearization Problem. — Given g ∈ G , find h ∈ G1 such
that

(4) g ◦ h = h ◦Rq,
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where q is the multiplier of g.

It is indeed clear that, if h solves (4), then q cannot be anything else but
dg
dz (0), and the kth iterate of g is thus h ◦Rqk ◦ h◦(−1). Notice that there is no
loss of generality in imposing a priori h ∈ G1: if h∗ ∈ G is a solution of (4)
with multiplier λ, then h∗ ◦R◦(−1)

λ is a solution which belongs to G1.
Similarly, we may consider the

Formal Linearization Problem. — Given g ∈ G̃ , find h ∈ G̃1 which
solves (4).

A solution h to this problem will be called a formal linearization of g. Of
course, if g ∈ G , then a solution of the Formal Linearization Problem with non-
zero radius of convergence is the same thing as a solution of the Holomorphic
Linearization Problem.

Viewing G̃ as a skew-product C∗ × G̃1, we will systematically write g in the
form

(5) g = Rq ◦ f, q ∈ C∗, f ∈ G̃1,

so that Equation (4) takes the form f ◦ h = R
◦(−1)
q ◦ h ◦Rq. We first recall the

elementary

Lemma 2.1. — Let f(z) = z +
∑
n≥1 anz

n+1 ∈ G̃1 and q ∈ C∗. Suppose
that q is not a root of unity. Then the Formal Linearization Problem for g =
Rq ◦ f has a unique solution

(6) h(z) = z +
∑

n≥1

cnz
n+1 ∈ G̃1.

The coefficients of the formal linearization are inductively determined by the
formula

(7) cn =
1

qn − 1

n∑

r=1

∑

(n0,...,nr)∈Nr+1 s.t.
n0+···+nr+r=n

arcn0
· · · cnr , n ≥ 1,

with the convention c0 = 1 and N = {0, 1, 2, . . .}.

Proof. — Write the conjugacy Equation (4) as h(qz) = qf
(
h(z)

)
and expand

it. �
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