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VARIATIONS ON GROMOV’S OPEN-DENSE ORBIT THEOREM

by Charles Frances

Abstract. — We investigate under which conditions a geometric structure which is
locally homogeneous on a dense open set is locally homogeneous everywhere. In the
case of a 3-dimensional Lorentz metric, this allows us to sharpen the conclusions in
Gromov’s open-dense orbit theorem.

Résumé (Variations sur le théorème de l’orbite dense-ouverte de M. Gromov). —
Nous étudions sous quelles conditions une structure géométrique qui est localement
homogène sur un ouvert dense est localement homogène partout. Dans la cadre des
variétés lorentziennes de dimension 3, cela conduit à un renforcement des conclusions
dans le théorème de l’orbite dense-ouverte de Gromov.

1. Introduction

The main motivation for this article comes from the following result of
M. Gromov, often quoted in the literature as the open-dense orbit theorem.

Theorem 1.1 ([13], Th. 3.3.A). — Let M be a smooth manifold and S a
smooth rigid geometric structure of algebraic type on M . If the automorphism
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group of (M,S) has a dense orbit, then the structure S is locally homogeneous
on a dense open subset of M .

Recall that a structure is locally homogeneous if, given any pair of points
(x, y) of M , there exists a local isometry f (namely a local diffeomorphism
preserving S), defined from a neighborhood of x to a neighborhood of y, and
satisfying f(x) = y.

The notion of rigid geometric structure of algebraic type was introduced
in [13]. It covers a wide range of structures, important examples of which are
pseudo-Riemannian metrics on manifolds or affine connections.

Theorem 1.1 actually holds under the weaker assumption that the pseudo-
group of local isometries has a dense orbit. It comes as a corollary of a more
general result, also proved in [13], stating that for a rigid geometric structure
of algebraic type, there exists a dense open subset where the orbits of the
pseudo-group of local isometries are closed submanifolds. It is thus clear that
whenever one of these orbits is dense, it must be open. The reader wanting
to learn more about Gromov’s theory of rigid transformation groups will find
details in [13, 10, 1, 22].

A beautiful application of Theorem 1.1 can be found in [3], where the au-
thors use Gromov’s result to get a full classification of contact Anosov flows
on compact manifolds, admitting smooth stable and unstable distributions.
Their strategy is to show that such contact flows preserve a smooth pseudo-
Riemannian metric, which turns out to be locally homogeneous because of
Gromov’s theorem and the Anosov dynamics. The end (actually the main
part) of the proof consists in classifying the possible algebraic local models.
More generally, Theorem 1.1 seems to be a key ingredient in classifying rigid
geometric structures of a certain type, with a topologically transitive group of
isometries. There is, however, a restriction: the local homogeneity ensured by
the theorem is only available on a dense open subset of the manifold, while we
would like such a result to hold on the whole manifold. This naturally raises
the following question:

Question 1.2. — Can the maximal open set of local homogeneity given by
Theorem 1.1 be a strict open subset of M?

While it is expected that the answer to the previous question should be
negative, there are very few instances where one can prove it (see [3] and [7] for
nontrivial examples where the authors show local homogeneity everywhere).

1.1. Open-dense orbit theorem and 3-dimensional Lorentz metrics. — If we re-
strict our attention to pseudo-Riemannian structures, the situation seems to
be the following. The answer to Question 1.2 is negative for Riemannian man-
ifolds and pseudo-Riemannian surfaces. In the first case, it is almost obvious,
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and in the second, we see that whenever the isometry group has a dense orbit,
the sectional curvature must be constant, which implies local homogeneity.

One aim of this paper is to study the first nontrivial case in addition to the
two preceding ones, namely that of 3-dimensional Lorentz manifolds. Our main
result is:

Theorem A. — Let (M3, g) be a smooth closed 3-dimensional Lorentz mani-
fold. If the isometry group Iso(M, g) has a dense orbit, then (M3, g) is locally
homogeneous.

Observe that we don’t make any a priori assumption on the group Iso(M, g).
In particular, it might be a discrete group.

Under stronger assumptions, Theorem A can be deduced from previous
works. For instance, if we assume that the metric g is real analytic and the
manifold M is compact, then S. Dumitrescu showed in [6] that the existence
of a nonempty open orbit for the pseudo-group of local isometries led to local
homogeneity.

In the smooth category, under the stronger assumption that there exists a
1-parameter flow of isometries with a dense orbit, Theorem A can be derived
from [21], where A. Zeghib classifies completely all Lorentzian flows on compact
3-manifolds, which are not equicontinuous.

Let us finally mention that obtaining a generalization of Theorem A to
Lorentz manifolds of arbitrary dimension, or to general pseudo-Riemannian
structures, seems to be rather challenging. Good examples of topologically
transitive pseudo-Riemannian flows, illustrating the conclusions of Theorem 1.1,
can be built as follows. Let G be a noncompact simple (or semi-simple) Lie
group, and let Γ be a uniform lattice. Let {gt} be a 1-parameter subgroup
of G, with noncompact closure in G. It follows from Moore’s theorem that {gt}
acts ergodically on G/Γ. Let κ0 be the Killing form on g. This is a pseudo-
Riemannian scalar product, which is Ad(gt)-invariant. Pushing this scalar
product by right translations, one gets a bi-invariant pseudo-Riemannian metric
on G, which in turns induces a gt-invariant metric h0 on G/Γ. This Killing met-
ric h0 is actually G-invariant, hence homogeneous. The point is that for many
1-parameter groups {gt} (for instance when {gt} is in a Cartan subgroup A, or
when {gt} is unipotent), there are many Ad(gt)-invariant pseudo-Riemannian
scalar products κ on g in addition to the Killing form. Actually, one can
choose some κs that are Ad(gt)-invariant, without being Ad(H)-invariant for
{gt} ( H. By the same construction as above, κ yields a pseudo-Riemannian
metric h on G/Γ for which the isometry group reduces to {gt} (maybe up to
finite index). Such a metric is of course no longer homogeneous, but is still
locally homogeneous. Now, even for those concrete examples, and apart from
particular choices of groups {gt}, it does not seem obvious to show that all
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pseudo-Riemannian metrics on G/Γ which are {gt}-invariant are locally homo-
geneous (a generalization of the results of [14] might be useful in this regard).

1.2. Quasihomogeneity. — Let us now discuss purely local problems related
to Question 1.2.

We recall that a local Killing field for a geometric structure S on a manifold
M is a vector fieldX defined on some open set U ⊂M and is such that the local
flow ϕtX preserves S. The set of Killing fields defined on U is a Lie subalgebra
of the vector fields on U , which we denote as kill(U). When the structure S is
rigid, then kill(U) is always finite dimensional. It then follows that if (Ui)i∈N is
a nested family of open sets containing a point x, and satisfying

⋂
i∈N Ui = {x},

then the dimension of kill(Ui) stabilizes for i large enough. The resulting Lie
algebra will be denoted by kill(x).

Starting from a point x ∈ M , we can consider the set of all points y ∈ M
that can be reached from x by flowing along successive local Killing fields. This
set is called the Killloc-orbit of x and is denoted as Oloc

x . Let us recall that
for “generic” rigid structures, there are no local Killing fields at all, and the
Killloc-orbits are reduced to points. The opposite situation is that of connected
locally homogeneous structures, for which Oloc

x = M . An interesting weaker
notion is that of quasihomogeneous structure.

Definition 1.3. — A geometric structure is called quasihomogeneous when
the union of open Killloc-orbits is dense.

Gromov’s theorem 1.1 says that a rigid geometric structure of algebraic type,
with a topologically transitive automophism group, is quasihomogeneous. It
is thus a question of general interest to understand when a quasihomogeneous
structure is actually locally homogeneous.

It seems that there is no universal answer to this problem. For instance, A.
Guillot and S. Dumitrescu exhibited in [7] quasihomogeneous affine connections
on surfaces which are not homogeneous, even in the real analytic category.

On the contrary, S. Dumitrescu and K. Melnick recently showed in [8] that
any real analytic Lorentz metric on a 3-manifold which is quasihomogeneous
must be locally homogeneous. The analyticity assumption is crucial in their
proof, and it is unknown whether the results of [8] still hold in the smooth
category.

Actually, Theorem A will follow from a partial generalization of [8] to smooth
manifolds. We will indeed show the following local result:

Theorem B. — Let (M3, g) be a smooth 3-dimensional Lorentz manifold (not
necessarily closed). Assume that on a dense open subset, the Lie algebra of local
Killing fields is at least 4-dimensional. Then (M3, g) is locally homogeneous.

It is not difficult to see that the hypothesis on the dimension of the local
Killing algebras does imply quasihomogeneity of the metric (see Fact 4.1). For
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a quasihomogeneous Lorentz 3-manifold, the possible dimensions of the local
Killing algebras kill(x) are 3, 4 or 6 (in the smooth case, this dimension may vary
with the point x). Hence Theorem B deals with quasihomogeneous structures
without open Killloc-orbits having a 3-dimensional local Killing algebra.

Even if the conclusions of Theorem B are the same as for analytic metrics,
the result cannot be obtained by adapting the methods of [8]. In fact, we
would like to point out that those regularity issues constitute a great part of
the subtleties in this type of problem. To emphasize this aspect, we observe
that the proof of Theorem B works for metrics of class C9 (this regularity is
required since we will need several covariant derivatives of the curvature tensor).
This regularity is probably not optimal, but let us stress that the conclusions
change dramatically if we work with metrics that have too low regularity.

Theorem C. — There exist 3-dimensional Lorentz manifolds (M3, g) such
that g is C1 and quasihomogeneous and satisfies hypotheses of Theorem B,
but is not locally homogeneous. Moreover, one can build compact examples in
regularity C0.

The conclusions of Theorem C will be made more precise in Section 6 (see
Theorems 6.1 and 6.2).

1.3. Organization of the paper. — A key ingredient in Gromov’s theory of rigid
transformation groups is a theorem regarding integration of finite-order Killing
fields. We will make systematic use of this result in all our proofs, so that
Section 2 will be devoted to a presentation of this theorem, in the conve-
nient framework of Cartan geometries (which includes, of course, the case of
Lorentz metrics). Next, we will use this integration result in Section 3 to
prove two general criteria allowing us to show that some quasihomogeneous
pseudo-Riemannian structures are actually locally homogeneous. Section 4 be-
gins with a general study of local Lorentz actions of 4-dimensional Lie algebras
on 3-manifolds. This study, together with the criteria established in Section 3,
leads to a proof of Theorem B. In Section 5, we explain how Theorem A can
be deduced from Theorem B. The upshot is to show that when the isometry
group of a pseudo-Riemannian manifold is topologically transitive, then numer-
ous local Killing fields must appear (even if the isometry group is discrete, for
instance). Finally, Section 6 will be devoted to the construction of examples of
Theorem C.

2. Integration of finite-order Killing fields

The main tool for understanding the Killloc-orbits of a rigid geometric struc-
ture is a theorem about integration of finite-order Killing fields proved in
[13][Section 1.6]. The results of [13] generalize former integrability theorems
proved by K. Nomizu in [17] and I. Singer in [20]. Here we won’t follow the
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