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DYNAMICS OF THE DOMINANT HAMILTONIAN

by Vadim Kaloshin & Ke Zhang

Abstract. — It is well known that instabilities of nearly integrable Hamiltonian
systems occur around resonances. Dynamics near resonances of these systems is well
approximated by the associated averaged system, called slow system. Each resonance
is defined by a basis (a collection of integer vectors). We introduce a class of resonances
whose basis can be divided into two well separated groups and call them dominant.
We prove that the associated slow system can be well approximated by a subsystem
given by one of the groups, both in the sense of the vector field and weak KAM theory.
As a corollary, we obtain perturbation results on normally hyperbolic invariant cylin-
ders, and the Aubry/Mañe sets. This has applications in Arnold diffusion in arbitrary
degrees of freedom.

Résumé (Dynamique de l’hamiltonien dominant). — Il est bien connu que les in-
stabilités des systèmes hamiltoniens presque intégrables interviennent au voisinage des
résonances. La dynamique de ces systèmes près des résonances est bien approchée par
les systèmes moyennés associés, appelés systèmes lents. Chaque résonance est défi-
nie par une base (une collection de vecteurs entiers). Nous introduisons une classe de
résonances dont la base peut être divisée en deux groupes bien distincts, que nous ap-
pelons dominantes. Nous prouvons que le système lent associé peut être bien approché
par un sous-système donné par l’un de ces deux groupes, à la fois comme champ de
vecteurs et au sens de la théorie KAM faible. Comme corollaire, nous obtenons des
résultats perturbatifs sur des cylindres invariants normalement hyperboliques, et sur
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les ensembles d’Aubry/Mañé. Cela a des applications en diffusion d’Arnold pour un
nombre arbitraire de degrés de liberté.

1. Introduction

Consider a nearly integrable system with n 1
2 degrees of freedom

(1.1) Hεpθ, p, tq “ H0ppq ` εH1pθ, p, tq, θ P Tn, p P Rn, t P T.
We will restrict to the case where the integrable part H0 is strictly convex,
more precisely, we assume that there is D ą 1 such that

D´1 Id ď B2
ppH0ppq ď D Id

as quadratic forms, where Id denotes the identity matrix.
The main motivation behind this work is the question of Arnold diffusion,

that is, topological instability for the system Hε. Arnold provided the first
example in [3], and asks ([1, 2, 4]) whether topological instability is “typical”
in nearly integrable systems with n ě 2 (the system is stable when n “ 1, due
to low dimensionality).

It is well known that the instabilities of nearly integrable systems occurs
along resonances. Given an integer vector k “ pk̄, k0q P Zn ˆ Z with k̄ ‰ 0, we
define the resonant submanifold to be Γk “ tp P Rn : k ¨ pωppq, 1q “ 0u, where
ωppq “ BpH0ppq. More generally, we consider a subgroup Λ of Zn`1 which does
not contain vectors of the type p0, . . . , 0, k0q, called a resonance lattice. The
rank of Λ is the dimension of the real subspace containing it. Then for a rank
d resonance lattice Λ, we define

ΓΛ “
č
tΓk : k P Λu “

dč

i“1

Γki ,

where tk1, . . . , kdu is any linear independent set in Λ. We call such ΓΛ a d-reso-
nance submanifold (d-resonance for short), which is a co-dimension d subman-
ifold of Rn, and in particular, an n-resonant submanifold is a single point. We
say that Λ is irreducible if it is not contained in any lattices of the same rank,
or equivalently, spanRΛX Zn`1 “ Λ.

We now consider the diffusion that occurs along a connected net Γ of
pn ´ 1q-resonances, which are curves in Rn. The main difficulty in proving
Arnold diffusion is in crossing the maximal (n-)resonances, which are inter-
sections of Γ with a transveral 1-resonance manifold Γk1 . A similar question
is whether one can “switch” at the intersection of two resonant curves (see
Figure 1.1).

For an n-resonance tp0u “ ΓΛ, we assume that Λ is irreducible, and B “
rk1, . . . , kns is a basis over Z. The averaging theory of Hε near p0 reduces to
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Γ
Γk1

Figure 1.1. Diffusion path and essential resonances in n “ 3.
The hollow dots requires crossing, while the gray dots requires
switching

the study of a particular slow system defined on TnˆRn, denoted Hs
p0,B. More

precisely, in an Op?εq-neighborhood of p0, the system Hε admits the normal
form (see [16], Appendix B)

Hs
p0,Bpϕ, Iq `

?
εP pϕ, I, τq, ϕ P Tn, I P Tn, τ P ?εT,

where

ϕi “ ki ¨ pθ, tq, 1 ď i ď n, pp´ p0q{
?
ε “ k̄1I1 ` ¨ ¨ ¨ k̄nIn.

Therefore, Hε is conjugate to a fast periodic perturbation to Hs
p0,B. Note that

our definition depend on the choice of basis B. A basis free definition requires
using a non-standard torus Tn`1{ωpp0qR as the configuration space, and in this
paper we choose to avoid this setting and fix a basis. Such averaged systems
were studied in [24].

When n “ 2, the slow system is a 2 degree of freedom mechanical system,
the structure of its (minimal) orbits is well understood. This fact underlies the
results on Arnold diffusion in two and half degrees of freedom (see [23], [24],
[25], [10], [16], [14], [17], [20], [21]). This is no longer the case when n ą 2, which
is a serious obstacle to proving Arnold diffusion in higher degrees of freedom.
In [15] it is proposed that we can sidestep this difficulty by using dimension
reduction: using existence of normally hyperbolic invariant cylinders (NHICs)
to restrict the system to a lower dimensional manifold. This approach only
works when the slow system has a particular dominant structure, which is the
topic of this paper.

In order to make this idea specific it is convenient to define the slow system
for any p0 and any d-resonance d ď n. For p0 P Rn, an irreducible rank d
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resonance lattice Λ, and its basis B “ rk1, . . . , kds, the slow system is

(1.2) Hs
p0,Bpϕ, Iq “ Kp0,BpIq ´ Up0,Bpϕq, ϕ P Td, I P Td.

Suppose the Fourier expansion of H1 is
ř
kPZn`1 hkppqe2πik¨pθ,tq, then

(1.3) Kp0,BpIq “
1

2
B2
ppH0pp0qpI1k̄1 ` ¨ ¨ ¨ ` Idk̄dq ¨ pI1k̄1 ` ¨ ¨ ¨ ` Idk̄dq,

(1.4) Up0,Bpϕ1, . . . , ϕdq “ ´
ÿ

lPZd
hl1k1`¨¨¨ldkdpp0q e2πipl1ϕ1`¨¨¨`ldϕdq.

The system Hs
p0,B is only dynamically meaningful when p0 P ΓΛ. However, the

more general set up allows us to embed the meaningful slow systems into a nice
space.

In the sequel we fix a rank m ă n lattice, called the strong lattice, and
its basis B “ rk1, . . . , kms. We say an irreducible lattice Λ Ą Λst of rank d is
dominated by Λst if

(1.5) MpΛ|Λstq :“ min
kPΛzΛst

|k| " max
kPBst

|k|,

where |k| “ supi |ki| is the sup-norm. Given the relation Λst Ă Λ, we extend
the basis rk1, . . . , kms of Λst to a basis B “ rk1, . . . , kds of Λ, such a basis is
called adapted. Naturally, as MpΛ|Λstq Ñ 8, we have |km`1|, . . . , |kd| Ñ 8 for
any adapted basis.

While we have fixed the basis Bst of Λst, the system Hp0,B strongly depends
on the choice of the adapted basis. To get a meaningful result, we only consider
particular bases that we call κ-ordered. Roughly speaking, given κ ą 1, a basis
rk1, . . . , kds is κ-ordered if ki is, up to a factor of order κ, the vector of smallest
norm in the set ΛzspanZtk1, . . . , ki´1u. The precise definition of this basis is
given in Section 2.2. We will show that there exists κ depending only on Bst,
such that any Λ Ĺ Λst admits a κ-ordered basis.

After an ordered basis is chosen, we have two systems Hs
p0,Bst and Hs

p0,B,
which we call the strong system and slow system respectively. When the lattices
have a dominant structure (see (1.5)), the slow system Hs

p0,B inherits consid-
erable amount of information from the strong system. Indeed, let us denote

Hs
p0,Bst “ KstpI1, . . . , Imq ´ U stpϕ1, . . . , ϕmq,
Hs
p0,B “ KpI1, . . . , Idq ´ Upϕ1, . . . , ϕdq,

under (1.5) and we will show that

(1.6) KstpI1, . . . , Imq “ KpI1, . . . , Im, 0, . . . , 0q, }U ´ U st}C2 ! 1,

which indicates Hs
p0,B can be approximated by an extension of Hs

p0,Bst . The
variables ϕi, Ii, 1 ď i ď m are called the strong variables, while ϕi, Ii, m` 1 ď
i ď d are called the weak variables.
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Recall that for each convex Hamiltonian H, we can associate a Lagrangian
L “ LH , and the Euler-Lagrange flow is conjugate to the Hamiltonian flow.
Denote by Xst

Lag and Xs
Lag the Euler-Lagrange vector fields associated to the

Hamiltonians Hs
p0,Bst and Hs

p0,B. Since the system for Xst
Lag is only defined for

the strong variables pϕi, viq, 1 ď i ď m, we define a trivial extension of Xst
Lag

by setting 9ϕi “ 9vi “ 0, m` 1 ď i ď d.
We show that after performing a coordinate change(1) and rescaling trans-

formation in the weak variables, the transformed vector field Xs
Lag converges to

that of Xst
Lag in some sense. In particular, if Xst

Lag admits a normally hyperbolic
invariant cylinder (NHIC), so does Xs

Lag. In a separate direction, we also obtain
a limit theorem on the weak KAM solutions by variational arguments. We now
formulate our main results in loose language, leaving the precise version for the
next section.

Main Result. — Assume that r ą n` 2pd´mq` 4. Given a fixed lattice Λst

of rank m with a fixed basis Bst, there exist κ ą 1 depending only on Bst, and
the following hold. Each rank d,m ď d ď n irreducible lattice Λ Ą Λst admits
a κ-ordered basis, under which we have:

1. (Geometrical) As MpΛ|Λstq Ñ 8, the projection of Xs
Lag to the strong

variables pϕi, viq, 1 ď i ď m converges to Xst
Lag uniformly. Moreover,

by introducing a coordinate change and rescaling affecting only the weak
variables pϕi, viq, m ` 1 ď i ď d, the transformed vector field of Xs

Lag

converges to a trivial extension of the vector field of Xst
Lag. As a corol-

lary, we obtain that if Xst
Lag admits an NHIC, then so does Xs

Lag for
sufficiently large MpΛ|Λstq.

2. (Variational) If, in addition, we have r ą n ` 4pd ´ mq ` 4, then
as MpΛ|Λstq Ñ 8, the weak KAM solution of Hs

p0,B (of properly chosen
cohomology classes) converges uniformly to a trivial extension of a weak
KAM solution of Hs

p0,Bst , considered as functions on Rd. We also obtain
corollaries concerning the limits of Mañe, Aubry sets, rotation vector of
minimal measure, and Peierl’s barrier function. The precise definitions
of these objects will be given later.

The statement that Hs
p0,Bst approximates Hs

p0,B is related to the classical
concept of partial averaging (see for example [5]). The statement minkPΛzΛst |k| "
maxkPBst |k| says that the resonances in Λst is much stronger than the rest of the
resonances in Λ. Partial averaging says that the weaker resonances contributes
to smaller terms in a normal form.

However, our treatment of the partial averaging theory is quite different from
the classical theory. By looking at the rescaling limit, we study the property

1. The coordinate change we perform is known in analytic mechanics as the Routhian
coordinates, which is an half-Lagrangian, half-Hamiltonian setting, see (2.8).
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