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COMPACT DOMAINS WITH PRESCRIBED CONVEX BOUNDARY
METRICS IN QUASI-FUCHSIAN MANIFOLDS

by Dmitriy Slutskiy

Abstract. — We show the existence of a convex compact domain in a quasi-Fuchsian
manifold such that the induced metric on its boundary coincides with a prescribed
surface metric of curvature K ≥ −1 in the sense of A. D. Alexandrov.

This result extends the existence part of the classical result by Alexandrov and
Pogorelov on the realization of a convex domain with a prescribed boundary metric
in H3 in the case where H3 is replaced by a quasi-Fuchsian manifold and therefore the
topology of a convex domain is not trivial.

Résumé (Domaines convexes compacts avec des métriques de bord prescrites dans les
variétés quasi-fuchsiennes). — Nous montrons l’existence d’un tel domaine compact
convexe dans une variété quasi-fuchsienne que la métrique induite sur son bord coïncide
avec une métrique prescrite de courbure K ≥ −1 au sens de A. D. Alexandrov.

Ce résultat étend la partie d’existence d’un résultat classique par Alexandrov et
Pogorelov sur la réalisation d’un domaine convexe avec une metrique de bord prescrite
dans H3 dans le cas où H3 est remplacé par une variété quasi-fuchsienne et donc la
topologie d’un domaine convexe n’est pas triviale.
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1. Introduction

The problem of existence and uniqueness of an isometric realization of a
surface with a prescribed metric in a given ambient space is classical in the
metric geometry. Initially stated in the Euclidean case, it can be posed for
surfaces in other spaces, in particular, in hyperbolic 3-space H3.

One of the first fundamental results in this theory is due to A. D. Alexandrov.
It concerns the realization of polyhedral surfaces in the spaces of constant
curvature.

As in [22], we denote by Mm(K) the m-dimensional complete simply con-
nected space of constant sectional curvatureK. So,M3(K) stands for spherical
3-space of curvature K in the case K > 0;M3(K) stands for hyperbolic 3-space
of curvature K when K < 0; and in the case K = 0, M3(K) denotes Euclidean
3-space.

Then the result of A. D. Alexandrov reads as follows:

Theorem 1.1 ([3]). — Let h be a metric of constant sectional curvature K with
cone singularities on a sphere S2 such that the total angle around every singular
point of h does not exceed 2π. Then there exists a closed convex polyhedron
in M3(K) equipped with the metric h which is unique up to the isometries
of M3(K). Here we include the doubly covered convex polygons, which are
planar in M3(K), in the set of convex polyhedra.

Later, A. D. Alexandrov and A. V. Pogorelov proved the following statement
in H3 [19]:

Theorem 1.2. — Let h be a C∞-regular metric of sectional curvature which
is strictly greater than −1 on a sphere S2. Then there exists an isometric
immersion of the sphere (S2, h) into hyperbolic 3-space H3 which is unique up
to the isometries of H3. Moreover, this immersion bounds a convex domain
in H3.

Definition 1.1 ([15, p. 30], [17, p. 11]). — A discrete finitely generated sub-
group ΓF ⊂ PSL2(R) without torsion and such that the quotient H2/ΓF has
a finite volume, is called a Fuchsian group.

Given a hyperbolic plane P in H3 and a Fuchsian group ΓP ⊂ PSL2(R)
acting on P, we can canonically extend the action of the group ΓP on the
whole space H3.

Here we recall another result on the above-mentioned problem considered for
a special type of hyperbolic manifolds, namely, for Fuchsian manifolds, which
is due to M. Gromov [12]:

Theorem 1.3. — Let S be a compact surface of genus greater than or equal
to 2, equipped with a C∞-regular metric h of sectional curvature which is greater
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than −1 everywhere. Then there exists a Fuchsian group ΓF acting on H3, such
that the surface (S, h) is isometrically embedded in H3/ΓF .

Remark 1.4. — The hyperbolic manifold H3/ΓF from the statement of The-
orem 1.3 is called Fuchsian. Note also that the limit set Λ(ΓF ) ⊂ ∂∞H3 of a
Fuchsian group ΓF is a geodesic circle in projective space CP1 regarded as the
boundary at infinity ∂∞H3 of the Poincaré ball model of hyperbolic 3-space H3.

In 2007 F. Fillastre [9] proved a polyhedral analog of Theorem 1.3, i.e., when
h is a hyperbolic metric with cone singularities of angle less than 2π (the term
“hyperbolic” means for us “of constant curvature equal to −1 everywhere”).

Definition 1.2 ([13]). — A compact hyperbolic manifold M is said to be
strictly convex if any two points in M can be joined by a minimizing geodesic
which lies inside the interior of M . This condition implies that the intrinsic
curvature of ∂M is greater than −1 everywhere.

In 1992 F. Labourie [13] obtained the following result which can be consid-
ered as a generalization of Theorems 1.2 and 1.3:

Theorem 1.5. — Let M be a compact manifold with boundary (different from
the solid torus) which admits a structure of a strictly convex hyperbolic man-
ifold. Let h be a C∞-regular metric on ∂M of sectional curvature which is
strictly greater than −1 everywhere. Then there exists a convex hyperbolic met-
ric g on M which induces h on ∂M :

g|∂M = h.

Recall that the limit set Λ(ΓF ) ⊂ ∂∞H3 of a Fuchsian group ΓF acting
on H3 is the intersection of some hyperbolic plane with the boundary at infinity
of the hyperbolic 3-space H3, i.e., a circle (in the Poincaré and Klein models of
the hyperbolic 3-space).

Particular examples of the varieties considered in Theorem 1.5 are the quasi-
Fuchsian manifolds.

Definition 1.3 ([15, p. 120]). — A quasi-Fuchsian manifold is a quasiconfor-
mal deformation space QH(ΓF ) of a Fuchsian group ΓF ⊂ PSL2(R).

In other words, a quasi-Fuchsian manifold is a quotient H3/ΓqF of H3 by
a discrete finitely generated group ΓqF ⊂ PSL2(R) of hyperbolic isometries
of H3 such that there is a Fuchsian group ΓF of isometries of H3 such that
the limit set Λ(ΓqF ) ⊂ ∂∞H3 of ΓqF is a Jordan curve which can be obtained
from the circle Λ(ΓF ) ⊂ ∂∞H3 by a quasiconformal deformation of ∂∞H3. The
group ΓqF is called quasi-Fuchsian.

In geometric terms, a quasi-Fuchsian manifold is a complete hyperbolic man-
ifold homeomorphic to S × R, where S is a closed connected surface of genus
at least 2, which contains a convex compact subset.
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Let us also recall the A. D. Alexandrov notion of curvature which does not
require a metric of a surface to be regular.

Let X be a complete locally compact length space and let dX(·, ·) stand
for the distance between points in X. For a triple of points p, q, r ∈ X a
geodesic triangle4(pqr) is a triple of geodesics joining these three points. For a
geodesic triangle4(pqr) ⊂ X we denote by4(p̃q̃r̃) a geodesic triangle sketched
in M2(K) whose corresponding edges have the same lengths as 4(pqr).

Definition 1.4 ([22, p. 7]). — X is said to have curvature bounded below by
K iff every point x ∈ X has an open neighborhood Ux ⊂ X such that for
every geodesic triangle 4(pqr) whose edges are contained entirely in Ux the
corresponding geodesic triangle 4(p̃q̃r̃) sketched in M2(K) has the following
property: for every point z ∈ qr and for z̃ ∈ q̃r̃ with dX(q, z) = dM2(K)(q̃, z̃)
we have

dX(p, z) ≥ dM2(K)(p̃, z̃).

In 2016 F. Fillastre, I. Izmestiev, and G. Veronelli [10] proved that for every
metric on the torus with curvature bounded from below by −1 in the Alexan-
drov sense there exists a hyperbolic cusp with convex boundary such that the
induced metric on the boundary is the given metric.

Our main goal is to prove the following extension of Theorem 1.5:

Theorem 1.6. — LetM be a compact connected 3-manifold with boundary of
the type S × [−1, 1] where S is a closed connected surface of genus at least 2.
Let h be a metric on ∂M of curvature K ≥ −1 in the Alexandrov sense. Then
there exists a hyperbolic metric g inM with a convex boundary ∂M such that
the metric induced on ∂M is h.

In particular, the following result proved in [23] immediately follows from
Theorem 1.6.

Theorem 1.7. — LetM be a compact connected 3-manifold with boundary of
the type S×[−1, 1] where S is a closed connected surface of genus at least 2. Let
h be a hyperbolic metric with cone singularities of angle less than 2π on ∂M
such that every singular point of h possesses a neighborhood in ∂M which does
not contain other singular points of h. Then there exists a hyperbolic metric g
inM with a convex boundary ∂M such that the metric induced on ∂M is h.

The idea of the proof of Theorem 1.7 is given in [25].
Theorem 1.7 can also be considered as an analog of Theorem 1.1 for the

convex hyperbolic manifolds with polyhedral boundary.

Definition 1.5 ([7]). — A pleated surface in a hyperbolic 3-manifold M is
a complete hyperbolic surface S together with an isometric map f : S → M
such that every s ∈ S is in the interior of some geodesic arc which is mapped
by f to a geodesic arc inM.

tome 146 – 2018 – no 2



BOUNDARY METRICS OF CONVEX COMPACT DOMAINS 313

A pleated surface resembles a polyhedron in the sense that it has flat faces
that meet along edges. Unlike a polyhedron, a pleated surface has no corners,
but it may have infinitely many edges that form a lamination.

Remark 1.8. — The surfaces serving as the connected components of the
boundary ∂M of the manifold M from the statement of Theorem 1.7, which
are equipped by assumption with hyperbolic polyhedral metrics, do not nec-
essarily have to be polyhedra embedded in M: these surfaces can be par-
tially pleated, i.e., the universal covers in H3 of these surfaces can contain
pleated 2-dimensional domains situated between several pairwise nonintersect-
ing geodesics which are also geodesics in H3.

Definition 1.6 ([16]). — LetM be the interior of a compact manifold with
boundary. A complete hyperbolic metric g on M is convex co-compact if M
contains a compact subset K which is convex: any geodesic segment c in (M, g)
with endpoints in K is contained in K.

In 2002 J.-M. Schlenker [21] proved uniqueness of the metric g in Theo-
rem 1.5. Thus, he obtained

Theorem 1.9. — Let M be a compact connected 3-manifold with boundary
(different from the solid torus) which admits a complete hyperbolic convex co-
compact metric. Let g be a hyperbolic metric onM such that ∂M is C∞-regular
and strictly convex. Then the induced metric I on ∂M has curvature K > −1.
Each C∞-regular metric on ∂M with K > −1 is induced on ∂M for a unique
choice of g.

It would be natural to conjecture that the metric g in the statements of
Theorems 1.6 and 1.7 is unique. The methods used in their demonstration do
not presently allow to attack this problem.

At last, recalling that the convex quasi-Fuchsian manifolds are special cases
of the convex co-compact manifolds, we can guess that Theorems 1.6 and 1.7
remain valid in the case when M is a convex co-compact manifold. It would
be interesting to verify this hypothesis in the future.

2. Construction of a quasi-Fuchsian manifold containing a compact
convex domain with a prescribed Alexandrov metric

of curvatureK ≥ −1 on the boundary

A compact connected 3-manifoldM of the type S × [−1, 1] from the state-
ment of Theorem 1.6, where S is a closed connected surface of genus at least 2,
can be regarded as a convex compact 3-dimensional domain of an unbounded
quasi-Fuchsian manifoldM◦ = H3/ΓQF where ΓQF stands for a quasi-Fuchsian
group of isometries of hyperbolic space H3. Note that the boundary ∂M of such
domain M consists of two distinct locally convex compact 2-surfaces in M◦.
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