Problème 7

Existe-t-il une mesure de probabilité sur le plan euclidien qui favorise les triangles acutangles (i.e. dont les trois angles sont strictement aigus)? Autrement dit, existe-t-il une mesure de probabilité sur le plan telle que trois points choisis au hasard et de manière indépendante forment un triangle acutangle non dégénéré avec une probabilité qui dépasse $\frac{1}{2}$?

Solution de l'auteur : La réponse est "oui".

Étant donnée une configuration $S = \{x_1, \dots, x_N\}$ de N points du plan, soit a(S) le nombre de triangles acutangles dont les sommets sont dans S. Considérons la mesure de comptage $\mu(S) = \frac{1}{N} \sum_{k=1}^{N} \delta_{x_k}$, où δ_x est la distribution de Dirac. Alors trois points choisis au hasard et de manière indépendante selon cette mesure seront à des endroits différents avec une probabilité $(N-1)(N-2)/N^2$, donc forment un triangle acutangle avec une probabilité

$$p(S) = \frac{(N-1)(N-2)}{N^2 \binom{N}{3}} a(S) = \frac{6}{N^3} a(S).$$

On construit dans la suite une configuration S de N=3n points pour tout entier $n\geq 4$ telle que

$$a(S) = 3 \binom{n}{2} n + n^3 \sim \frac{5}{2} n^3 = \frac{5}{9} \frac{N^3}{6},$$

donc avec p(S) arbitrairement proche de 5/9 si n est assez grand. J'explique dans un commentaire à la fin que, si la plus connue des conjectures sur les hypergraphes est vraie, alors 5/9 est optimal. Après avoir proposé la question au concours de la SMF, j'ai eu connaissance de la référence [2], qui contient une construction très voisine. Cette référence propose aussi (Theorem 4) la majoration $P \leq \frac{2}{3}$. Curieusement, les auteurs de [1] ne font pas le lien avec cette conjecture, alors qu'ils la connaissaient forcément et qu'elle leur aurait permis d'améliorer cette majoration.

Notations. Le plan est \mathbb{R}^2 , muni de sa norme euclidienne $\| \ \|$.

Pour $X \subset \mathbb{R}^2$ on note Int X l'intérieur de X, bd X sa frontière, conv X son enveloppe convexe et aff X son enveloppe affine (le plus petit sous-espace affine contenant X).

Le segment conv $\{x,y\}$ est noté xy et le triangle conv $\{x,y,z\}$ est noté xyz. Un triangle est dit non dégénéré si son intérieur est non vide. Un angle est dit aigu si sa mesure est strictement inférieure à $\pi/2$.

Étant donnés $\omega \in \mathbb{R}^2$ et r > 0, $\mathcal{D}(\omega, r)$ désigne le disque fermé de centre ω et de rayon r.

Pour $x \neq y \in \mathbb{R}^2$, on note $\mathcal{S}(x,y)$ la bande ouverte de largeur $\|x-y\|$ et contenant x et y sur son bord. Soit $\mathcal{H}(x,y) = \mathcal{S}(x,y) \setminus \mathcal{D}\left(\frac{x+y}{2},\frac{\|x-y\|}{2}\right)$. De cette manière, on a pour tout $z \in \mathbb{R}^2$:

le triangle xyz est acutangle si et seulement si $z \in \mathcal{H}(x,y)$.

L'angle orienté entre les segments orientés xy et xz est noté \widehat{yxz} . Les mesures d'angles seront toutes choisies dans $]-\pi,\pi]$. Pour plus de fluidité dans le discours, on confondra parfois "angle" et "mesure d'angle".

Pour $p, q \in \mathbb{R}^2$ et $\delta > 0$, soit

$$A(p, q, \delta) = \{ m \in \mathbb{R}^2 : ||m - p|| = ||q - p|| \text{ et } |\widehat{mpq}| \le \delta \};$$

 $\mathcal{A}(p,q,\delta)$ est un arc de cercle fermé d'ouverture angulaire 2δ ; p est le centre du cercle, et q est le milieu de l'arc.

Soit p_1 p_2 p_3 un triangle acutangle, d'angles en p_i notés α_i et de longueurs de côtés $r_i = \|p_{i+1} - p_i\|$ (i

Avec $\delta_1 > 0$ assez petit, on choisit les n premiers points x_1, \ldots, x_n équidistants sur l'arc $\mathcal{A}(p_2, p_1, \delta_1)$, avec x_1 et x_n aux extrémités. En posant $\varepsilon_1 = \frac{\delta_1}{n-1}$ et $h_1 = r_1 \sin \varepsilon_1$, on a $||x_{k+1} - x_k|| = 2h_1$.

Sur la droite aff $(p_1 p_2)$, soit $p_2' \neq p_2''$ tels que $||p_2 - p_2'|| = ||p_2 - p_2''|| = \frac{h_1}{\sin(\delta_1 - \epsilon_1)}$, disons, avec $p_2' \in p_1 p_2$ (et donc $p_2 \in p_1 p_2''$).

Soit R_2 la figure de type "losange" définie par

$$R_2 = \operatorname{Int} \operatorname{conv} \left(\left\{ p_2', p_2'' \right\} \cup \mathcal{D}(p_2, h_1) \right).$$

On choisit $n \geq 4$ et δ_1 assez petit pour que $\frac{\sin \varepsilon_1}{\sin(\delta_1 - \varepsilon_1)} \leq \cos \delta_1 - \sin \delta_1$. Ceci entraı̂ne que R_2 ne rencontre pas $\mathcal{D}\left(\frac{x_1 + x_n}{2}, \frac{\|x_1 - x_n\|}{2}\right)$, le disque de diamètre $x_1 x_n$. Ainsi, pour tous $i, j \in \{1, \dots, n\}$ distincts, $\mathcal{H}(x_i, x_j)$ contient R_2 .

A présent on cherche $\delta_2>0$ tel que R_2 contienne l'arc $\mathcal{A}(p_3,p_2,\delta_2)$. Soit u l'extrémité de la portion circulaire de $\mathrm{bd}\,R_2$ telle que $\widehat{p_2''up_2}=\frac{\pi}{2}$ et soit v le point d'intersection de $\mathrm{bd}\,R_2$ et $\mathrm{bd}\,\mathcal{D}(p_3,r_2)$, avec $v\in p_2''u$. Posons $\delta=\widehat{p_2\,p_3\,v}$. Alors le triangle uvp_2 est rectangle en u, a un angle $\widehat{up_2v}=\alpha_2-\frac{\delta}{2}-\delta_1+\varepsilon_1$, un côté up_2 de longueur h_1 , et une hypoténuse vp_2 de longueur $2r_2\sin\frac{\delta}{2}$, donc

$$2r_2\sin\frac{\delta}{2}\cos\left(\alpha_2-\frac{\delta}{2}-\delta_1+\varepsilon_1\right)=h_1=r_1\sin\varepsilon_1.$$

Comme $\varepsilon_1 = \frac{\delta_1}{n-1} < \frac{\delta_1}{2}$ et que la fonction $u \mapsto \frac{\sin u}{u}$ decroît sur $[0,\pi]$, on a

$$\frac{1}{\varepsilon_1}\sin\varepsilon_1 > \frac{2}{\delta_1}\sin\frac{\delta_1}{2}$$
.

On obtient

$$\frac{2r_1}{n-1}\sin\frac{\delta_1}{2} < h_1 < 2r_2\sin\frac{\delta}{2}\cos\alpha_2.$$

On choisit donc δ_2 tel que

$$\frac{r_1}{n-1}\sin\frac{\delta_1}{2} = r_2\sin\frac{\delta_2}{2}\cos\alpha_2. \tag{17}$$

Sur l'arc $\mathcal{A}(p_3,p_2,\delta_2)$, on choisit les points x_{n+1},\ldots,x_{2n} comme précédemment (i.e. équidistants, avec x_{n+1} et x_{2n} aux extrémités de l'arc). Alors, pour tous $i,j\in\{n+1,\ldots,2n\}$ distincts, $\mathcal{H}(x_i,x_j)$ contient

$$R_3 = \operatorname{Int conv} \left(\left\{ p_3', p_3'' \right\} \cup \mathcal{D}(p_3, h_2) \right)$$

où $h_2=r_2\sin\varepsilon_2, \varepsilon_2=rac{\delta_2}{n-1}, p_3'\in p_2p_3, p_3\in p_3'p_3''$ et $\|p_3-p_3''\|=\|p_3-p_3''\|=rac{h_2}{\sin(\delta_2-\varepsilon_2)}$. Soit δ_3 tel que

$$\frac{r_2}{n-1}\sin\frac{\delta_2}{2} = r_3\sin\frac{\delta_3}{2}\cos\alpha_3;\tag{18}$$

alors R_3 contient l'arc $\mathcal{A}(p_1, p_3, \delta_3)$. Sur $\mathcal{A}(p_1, p_3, \delta_3)$, on choisit les points x_{2n+1}, \ldots, x_{3n} comme avant, et $\mathcal{H}(x_i, x_j)$ contiendra $\{x_1, \ldots, x_n\}$ pour tous $i, j \in \{2n+1, \ldots, 3n\}$ distincts dès que

$$\frac{r_3}{n-1}\sin\frac{\delta_3}{2} \ge r_1\sin\frac{\delta_1}{2}\cos\alpha_1. \tag{19}$$

En multipliant (17), (18) et (19), on obtient que cette condition est satisfaite dès que

$$\cos \alpha_1 \cos \alpha_2 \cos \alpha_3 \le \frac{1}{(n-1)^3}$$
.

On choisit par exemple $\alpha_1 = n^{-3/2}$, $\alpha_2 = \alpha_3 = \frac{\pi - \alpha_1}{2}$, et $\delta_1 > 0$ assez petit. Les points $x_i \, x_j \, x_k$ forment un triangle acutangle dans les quatre cas suivants (et seulement dans ces cas):

- (i) $0 < i, j \le n < k \le 2n$,
- (ii) $n < i, j \le 2n < k \le 3n$,
- (iii) $0 < k \le n < 2n < i, j \le 3n$ et
- (iv) $0 < i \le n < j \le 2n < k \le 3n$,

ce qui montre que $a(S) = 3\binom{n}{2}n + n^3$.

Commentaire. La (3,4)-conjecture de Turàn [7] est sans doute la conjecture la plus connue dans le domaine des hypergraphes. L'objet de ce commentaire est de rappeler cette conjecture et de montrer que la

construction présentée ci-dessus est optimale si cette conjecture est vraie dans le sens suivant : le maximum, sur toutes les configurations S à n points, du nombre a(S) de triangles acutangles est égal à $3\binom{n}{2}n+n^3$.

Une conséquence est que 5/9 est optimal dans le sens suivant. Étant donnée une mesure de probabilité μ sur le plan et trois points a,b,c pris au hasard de manière indépendante, notons $P(\mu)$ la probabilité que le triangle abc soit acutangle. Alors le supremum de $P(\mu)$ sur toutes les mesures de probabilité μ sur \mathbb{R}^2 est égal 5/9 si la (3,4)-conjecture de Turàn est vraie.

1. Étant donné un entier $n \ge 3$, soit A_n le maximum de a(S) pour toutes les configurations S à n points. Une configuration S sera dite *optimale* si $a(S) = A_n$.

Pour chaque $n \geq 3$, soit p_n la proportion de triangles acutangles d'une configuration optimale à n points : $p_n = A_n/\binom{n}{3}$. On montre facilement que la suite $(p_n)_{n\geq 3}$ est décroissante au sens large ; l'argument est le même que dans la preuve ci-après. Posons $p = \lim_{n \to +\infty} p_n$.

Alors j'affirme que $P(\mu) \leq p$ pour toute mesure de probabilité μ sur \mathbb{R}^2 . En effet, soit μ une mesure de probabilité arbitraire sur le plan. Pour n arbitrairement grand, choisissons n points au hasard et de manière indépendante. Par linéarité, l'espérance du nombre de triangles acutangles est $\binom{n}{3}P(\mu)$, et ce nombre est au plus le maximum A_n , ce qui montre que $P(\mu) \leq p_n$ pour tout entier n.

2. Un 3-hypergraphe uniforme, ou 3-graphe pour faire court, est la donnée d'un ensemble V (les sommets) est d'un ensemble E de parties de V à 3 éléments (les arêtes). Soit $t_3(n,4)$ le nombre maximal d'arêtes d'un 3-graphe à E sommets ne contenant pas le 3-graphe complet sur E sommets comme sous-graphe induit. Un exemple de 3-graphe à E sommets contenant beaucoup d'arêtes sans contenir le 3-graphe complet sur E sommets peut être construit ainsi : on divise E en trois parties E es plus égales possibles, c'et-à-dire de cardinaux respectivement E els que E que E et E el et E en lus eque lus 1. On met maintenant une arête à chaque triplet E et seulement à ceux-là — tel que, ou bien E et E

$$t_3(n,4) \ge T_n := \max_{a+b+c=n} \left({a \choose 2} b + {b \choose 2} c + {c \choose 2} a + abc \right).$$

La (3,4)-conjecture de Turàn est que $t_3(n,4)=T_n$ pour tout $n\in\mathbb{N}$. Elle a été vérifiée pour tout $n\leq 13$ [6]. Cette conjecture impliquerait

$$L := \lim_{n \to +\infty} t_3(n,4) / \binom{n}{3} = \frac{5}{9} \approx 0.555.$$

La meilleure borne publiée pour L est $\frac{3+\sqrt{17}}{12}\approx 0.597$ [1]. La borne 0.561666 est annoncée dans [5]. Une difficulté est que, si $n\geq 7$, alors plusieurs autres 3-graphes atteignent ce maximum putatif [3, 4].

Notre construction ci-dessus montre que $A_n \geq T_n$ pour tout entier $n \geq 3$ (prendre un plus petit nombre de points si n n'est pas un multiple de 3, ou si $n \leq 12$). Réciproquement, la borne $A_n \leq t_3(n,4)$ est immédiate : étant donnés quatre points a,b,c,d dans le plan euclidien, au moins un des triangles abc,abd,acd ou bcd n'est pas acutangle.

Références

- [1] F. Chung, L. Lu, An upper bound for the Turàn number $t_3(n, 4)$, J. Combin. Th. 87 (1999) 381–389.
- [2] P. Erdös, M.J.T. Guy, J.H. Conway, and H. T. Croft, On the distribution of values of angles determined by coplanar points, *J. London Math Soc.* 19, 1979.
- [3] D. G. Fon-Der-Flaass, Method for construction of (3, 4)-graphs, *Mat. Zametki* 44 (4), 546–550 (1988) [Math. Notes 44 (4), 781–783 (1988)].
- [4] A. V. Kostochka, A class of constructions for Turàn's (3, 4)-problem, *Combinatorica* 2 (1982) 187–192.
- [5] A. A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations, *SIAM J. Discrete Math.* 24 (2010) 946–963.

- [6] T. H. Spencer, On the size of independent sets in hypergraphs, *Coding theory, design theory, group theory*, Wiley-Intersci. Publ., Wiley, New York (1993) 263–273.
- [7] P. Turàn, Eine Extremalaufgabe aus der Graphentheorie, *Mat. Fiz. Lapok* 48 (1941) 436–452. [8] P. Turán, Research problem.

Ce problème n'a été résolu de façon complètement satisfaisante par aucune équipe, même si plusieurs ont donné des éléments de réponse corrects et substantiels.