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ANTI-GRAVITY À LA CARLOTTO-SCHOEN
[after Carlotto and Schoen]

by Piotr T. CHRUŚCIEL

INTRODUCTION

In [13] Carlotto and Schoen show that gravitational fields can be used to shield
gravitational fields. That is to say, one can produce spacetime regions extending to
infinity where no gravitational forces are felt whatsoever, by manipulating the gravi-
tational field around these regions. A sound-bite version of the result reads:

Theorem A (Carlotto & Schoen [13]). — Given an asymptotically flat initial data
set for vacuum Einstein equations there exist cones and asymptotically flat vacuum
initial data which coincide with the original ones inside the cones and are Minkowskian
outside slightly larger cones, see Figure 1.

Figure 1. Left picture: The new initial data are Minkowskian outside
the larger cone, and coincide with the original ones inside the smaller
one. The construction can also be carried out the other way round, with
Minkowskian data inside the smaller cone and the original ones outside
the larger cone. Both cones extend to infinity, and their tips are located
very far in the asymptotically flat region. Right picture: Iterating the con-
struction, one can embed any finite number of distinct initial data sets into
Minkowskian data, or paste-in Minkowskian data inside several cones into
a given data set.
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Actually, the result is true for all cones with preassigned axis and pair of apertures
provided the vertex is shifted sufficiently far away in the asymptotically flat regions.

In the associated spacetimes (M ,g) the metric coincides with the Minkowski metric
within the domain of dependence, which we will denote by D , of the complement of
the larger cones, which forms an open subset of M ; we return to this in Section 1.6
below. Physical objects in D do not feel any gravitational fields. The Carlotto-Schoen
gluing has effectively switched off any gravitational effects in this region. This has
been achieved by manipulating vacuum gravitational fields only.

In this séminaire I will describe the context, define the notions used, highlight the
key elements of the proof of Theorem A, and discuss some developments.

1. THE CONTEXT

1.1. Newtonian gravity

Newtonian gravity is concerned with a gravitational potential field φ, which solves
the equation

(1.1) ∆φ = 4πGρ,

where ∆ is the Laplace operator in an Euclidean R3 and G is Newton’s constant. Up
to conventions on signs, proportionality factors, and units, ρ is the matter density,
which is not allowed to be negative. Isolated systems are defined by the requirement
that both ρ and φ decay to zero as one recedes to infinity.

Freely falling bodies experience an acceleration proportional to the gradient of φ.
So no gravitational forces exist in those regions where φ is constant.

Suppose that ρ has support contained in a compact set K, and that φ is constant
on an open set Ω. Since solutions of (1.1) are analytic on R3 \ K, φ is constant on
any connected component of R3 \K which meets Ω. We conclude that if Ω extends to
infinity, then φ vanishes at all large distances. This implies, for all sufficiently large
spheres S(R),

0 =

∫
S(R)

∇φ · nd2S =

∫
B(R)

∆φd3V = 4πG

∫
B(R)

ρ d3V.

Since ρ is non-negative, we conclude that ρ ≡ 0. Equivalently, for isolated systems with
compact sources, Newtonian gravity cannot be screened away on open sets extending
to large distances.

The striking discovery of Carlotto and Schoen is, that this can be done in Ein-
steinian gravity.
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The Newtonian argument above fails if matter with negative density is allowed.
It should therefore be emphasized that the Carlotto-Schoen construction is done by
manipulating vacuum initial data, without involvement of matter fields.

1.2. Einsteinian gravity, general relativistic initial data sets

Mathematical general relativity is born around 1952 with the breakthrough paper
of Yvonne Choquet-Bruhat [42], showing that Einstein’s field equations,

(1.2) Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν ,

admit a well posed Cauchy problem. Here Rµν is the Ricci tensor of the spacetime
metric g, R its Ricci scalar, Tµν the energy-momentum tensor of matter fields, Λ

the “cosmological constant,” G is Newton’s constant as before, and c is the speed of
light. In vacuum Tµν vanishes, in which case (1.2) is equivalent to the requirement
that g be Ricci-flat when moreover the vanishing of Λ is imposed. The notation gµν
indicates that the metric g is a two-covariant tensor field, similarly for Tµν , etc.

The geometric initial data for the four-dimensional vacuum Einstein equations are
a triple (S , g,K), where (S , g) is a three-dimensional Riemannian manifold and K is
a symmetric two-covariant tensor field on S . One should think of S as a space-like
hypersurface in the vacuum Lorentzian spacetime (M ,g), then g is the metric induced
by g on S , and K is the second fundamental form (“extrinsic curvature tensor”) of S

in (M ,g).
It has already been recognized in 1927 by Darmois [37] that (g,K) are not arbi-

trarily specifiable, but have to satisfy a set of constraint equations,

R = |K|2 − (trgK)2 + 2µ+ 2Λ,(1.3)

Di(Kij − trgKgij) = Jj ,(1.4)

where µ = 8πG
c4 Tµνn

µnν is the matter energy density on S and Jj = 8πG
c4 Tµjn

µ the
matter momentum vector, with nµ being the unit normal to S in (M ,g). The re-
quirement of positivity of energy of physical matter fields translates into the dominant
energy condition:

(1.5) µ ≥ |J |g,

where of course |J |g ≡
√
g(J, J) ≡

√
gijJ iJj (summation convention). In particular

µ should be non-negative.
The constraint equations are the source of many headaches in mathematical and

numerical general relativity. On the other hand, together with the energy condition,
they are the source of beautiful mathematical results (1) such as the positive energy

(1) The reader is invited to consult [4, 14,26,35] for more details and further references.
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theorems [50, 51], the Penrose inequality [10, 44], the Corvino-Schoen [32, 36] or the
Carlotto-Schoen gluings.

1.3. Asymptotic flatness

Initial data for general relativistic isolated systems are typically modeled by asymp-
totically flat data with vanishing cosmological constant Λ. Actually, astrophysical ob-
servations indicate that Λ is positive. However, for the purpose of observing nearby
stars, or for our stellar system, the corrections arising from Λ are negligible, they only
become important at cosmological scales.

The class of asymptotically flat systems should obviously include the Schwarzschild
black holes. In those, on the usual slicing by t = const. hypersurfaces it holds that
Kij ≡ 0 and

gij =
(

1 +
m

2r

)4

δij +O(r−2),(1.6)

in spacetime dimension four, or

gij =
(

1 +
m

2rn−2

) 4
n−2

δij +O(r−(n−1)),(1.7)

in general spacetime dimension n+ 1. Here δij denotes the Euclidean metric in mani-
festly flat coordinates. The asymptotics (1.6) is often referred to as Schwarzschildean,
and the parameter m is called the ADM mass of the metric. Now, one can obtain
initial data with non-vanishing total momentum by taking Lorentz-transformed slices
in the Schwarzschild spacetime. This leads to initial data sets satisfying

∂i1 · · · ∂i`(gij − δij) = O(r−α−`),(1.8)

∂i1 · · · ∂ikKij = O(r−α−k−1),(1.9)

with α = n−2, for any k, ` ∈ N. Metrics g satisfying (1.8) will be called asymptotically
Euclidean.

The flexibility of choosing α ∈ (0, n − 2) in the definition of asymptotic flatness
(1.8)-(1.9), as well as k, ` smaller than some threshold, is necessary in Theorem A.
Indeed, the new initial data constructed there are not expected to satisfy (1.8) with
α = n− 2. It would be of interest to settle the question, whether or not this is really
the case.

There does not appear to be any justification for the Schwarzschildean threshold
α = n− 2 other than historical. On the other hand, the threshold

(1.10) α = (n− 2)/2

appears naturally as the optimal threshold for a well-defined total energy-momentum
of the initial data set. This has been first discussed in [15–17,41], compare [2].
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1.4. Time-symmetric initial data and the Riemannian context

Initial data are called time-symmetric when Kij ≡ 0. In this case, and assuming
vacuum, the vector constraint equation (1.4) is trivially satisfied, while the scalar
constraint equation (1.3) becomes the requirement that (S , g) has constant scalar
curvature R:

(1.11) R = 2Λ.

In particular (S , g) should be scalar-flat when Λ = 0. (The “time-symmetric” termi-
nology reflects the fact that a suitable reflection across S in the associated spacetime
is an isometry.) So all statements about vacuum initial data translate immediately into
statements concerning scalar-flat Riemannian manifolds. For example, the following
statement is a special case of Theorem A:

Theorem 1.1 (Carlotto & Schoen). — Given a scalar-flat asymptotically Euclidean
metric g there exist cones and scalar-flat asymptotically Euclidean metrics which co-
incide with g inside of the cones and are flat outside slightly larger cones.

This theorem was one of the motivations for the proof of Theorem A. For instance,
the question of existence of non-trivial, scalar-flat, asymptotically flat metrics ĝ which
are exactly flat in a half-space arises when studying complete, non-compact minimal
hypersurfaces. If ĝ is such a metric, then all hyperplanes lying in the flat half-space
minimize area under compactly supported deformations which do not extend into the
non-flat region. So Theorem 1.1 shows that such metrics ĝ actually exist. This should
be contrasted with the following beautiful result of Chodosh and Eichmair [12], which
shows that minimality under all compactly supported perturbations implies flatness:

Theorem 1.2 (Chodosh, Eichmair). — The only asymptotically Euclidean three-
dimensional manifold with non-negative scalar curvature that contains a complete
non-compact embedded surface S which is a (component of the) boundary of some
properly embedded full-dimensional submanifold of (M, g) and is area-minimizing
under compactly supported deformations is flat R3, and S is a flat plane.

The above was preceded by a related rigidity result of Carlotto [11]:

Theorem 1.3 (Carlotto). — Let (M, g) be a complete, three-dimensional, asymptot-
ically Schwarzschildean Riemannian manifold with non-negative scalar curvature. If
M contains a complete, properly embedded, stable minimal surface S, then (M, g) is
the Euclidean space and S is a flat plane.

Such results immediately imply non-compactness for sequences of solutions of the
Plateau problem with a diverging sequence of boundaries. We note that compactness
results in this spirit play a key role in the Schoen & Yau proof of the positive energy
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