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WELL-POSEDNESS AND DISPERSIVE DECAY
OF SMALL DATA SOLUTIONS

FOR THE BENJAMIN-ONO EQUATION

 M IFRIM  D TATARU

A. – This article represents a first step toward understanding the long time dynamics
of solutions for the Benjamin-Ono equation. While this problem is known to be both completely
integrable and globally well-posed in L2, much less seems to be known concerning its long time
dynamics. Here, we prove that for small localized data the solutions have (nearly) dispersive dynamics
almost globally in time. An additional objective is to revisit the L2 theory for the Benjamin-Ono
equation and provide a simpler, self-contained approach.

R. – Cet article représente une première étape vers la compréhension du comportement
en temps long pour l’équation de Benjamin-Ono. Tandis que ce problème est à la fois complètement
intégrable et globalement bien posé en L2, beaucoup moins semble être connu en ce qui concerne
son comportement en temps long. Nous montrons ici que pour de données petites et localisées, les
solutions ont une dynamique dispersive presque globalement en temps. Un autre objectif est de revoir
la théorie L2 pour Benjamin-Ono et de fournir une approche plus simple et autonome.

1. Introduction

In this article we consider the Benjamin-Ono equation

(1.1) .@t CH@
2
x/� D

1

2
@x.�

2/; �.0/ D �0;

where � is a real valued function � W R � R ! R. H denotes the Hilbert transform on the
real line; we use the convention that its symbol is

H.�/ D �i sgn �

as in Tao [37] and opposite to Kenig-Martel [25]. Thus, dispersive waves travel to the right
and solitons to the left.

The Benjamin-Ono equation is a model for the propagation of one dimensional internal
waves (see [4]). Among others, it describes the physical phenomena of wave propagation at
the interface of layers of fluids with different densities (see Benjamin [4] and Ono [30]). It also
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298 M. IFRIM AND D. TATARU

belongs to a larger class of equations modeling this type of phenomena, some of which are
certainly more physically relevant than others.

Equation (1.1) is known to be completely integrable. In particular it has an associated
Lax pair, an inverse scattering transform, and an infinite hierarchy of conservation laws. For
further information in this direction we refer the reader to [23] and references therein. We list
only some of these energies, which are easily verified to be conserved for regular solutions (for
example H 3

x .R/). Integrating by parts, one sees that this problem has conserved mass,

E0 D

Z
�2 dx;

momentum

E1 D

Z �
�H�x �

1

3
�3
�
dx;

as well as energy

E2 D

Z �
�2x �

3

4
�2H�x C

1

8
�4
�
dx:

More generally, at each nonnegative integer k we similarly have a conserved energy Ek
corresponding at leading order to the PH

k
2 norm of �.

This is closely related to the Hamiltonian structure of the equation, which uses the
symplectic form

!. 1;  2/ D

Z �
 1@

�1
x  2 �  2@

�1
x  1

�
dx

with associated map J D @x . Then the Benjamin-Ono equation is generated by the Hamil-
tonian E1 and symplectic form !. E0 generates the group of translations. All higher order
conserved energies can be viewed in turn as Hamiltonians for a family of commuting flows,
which are known as the Benjamin-Ono hierarchy of equations.

The Benjamin-Ono equation is a dispersive equation, i.e., the group velocity of waves
depends on the frequency. Precisely, the dispersion relation for the linear part is given by

!.�/ D ��j�j;

and the group velocity for waves of frequency � is v D 2j�j. Here we are considering real
solutions, so the positive and negative frequencies are matched. However, if one were to
restrict the linear Benjamin-Ono waves to either positive or negative frequencies then we
obtain a linear Schrödinger equation with a choice of signs. Thus one expects that many
features arising in the study of nonlinear Schrödinger equations will also appear in the study
of the Benjamin-Ono equation.

Last but not least, when working with the Benjamin-Ono equation one has to take into
account its quasilinear character. A cursory examination of the equation might lead one to
the conclusion that it is in effect semilinear. It is only a deeper analysis (see [29], [27]) which
reveals the fact that the derivative in the nonlinearity is strong enough to insure that the
nonlinearity is non-perturbative, and that only continuous dependence on the initial data
may hold, even at high regularity.
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Considering local and global well-posedness results in Sobolev spaces H s , a natural
threshold is given by the fact that the Benjamin-Ono equation has a scale invariance,

(1.2) �.t; x/! ��.�2t; �x/;

and the scale invariant Sobolev space in dimension 1 associated to this scaling is PH�
1
2 .

There have been many developments in the well-posedness theory for the Benjamin-Ono
equations, see: [6, 21, 27, 24, 37, 29, 32, 22, 33]. Well-posedness in weighted Sobolev spaces
was considered in [9] and [8], while soliton stability was studied in [25, 10]. These is also
closely related work on an extended class of equations, called the generalized Benjamin-Ono
equations, for which we refer the reader to [12], [13] and references therein. A more extensive
discussion of the Benjamin-Ono equation and related fluid models can be found in the survey
papers [1] and [26].

Presently, for the Cauchy problem at low regularity, the existence and uniqueness result at
the level of H s.R/ data is known for the Sobolev index s � 0. Well-posedness in the range
�
1
2
� s < 0 appears to be an open question. We now review some of the key thresholds in

this analysis.
The H 3 well-posedness result was obtained by Saut in [33], using energy estimates. For

convenience we use his result as a starting point for our work, which is why we recall it here:

T 1. – The Benjamin-Ono equation is globally well-posed in H 3.

The H 1 threshold is another important one, and it was reached by Tao [37]; his article is
highly relevant to the present work, and it is where the idea of renormalization is first used
in the study of the Benjamin-Ono equation.

TheL2 threshold was first reached by Ionescu and Kenig [21], essentially by implementing
Tao’s renormalization argument in the context of a much more involved and more delicate
functional setting, inspired in part from the work of the second author [38] and of Tao [37]
on wave maps. This is imposed by the fact that the derivative in the nonlinearity is borderline
from the perspective of bilinear estimates, i.e., there is no room for high frequency losses.
An attempt to simplify the L2 theory was later made by Molinet-Pilod [28]; however, their
approach still involves a rather complicated functional structure, using not only X s;b spaces
but additional weighted mixed norms in frequency.

Our first goal here is to revisit theL2 theory for the Benjamin-Ono equation, and (re)prove
the following theorem:

T 2. – The Benjamin-Ono equation is globally well-posed in L2.

Since the L2 norm of the solutions is conserved, this is in effect a local in time result,
trivially propagated in time by the conservation of mass. In particular it says little about the
long time properties of the flow, which will be our primary target here.

The proof we give here is for the case of the Benjamin-Ono equation on the real line.
However, it can be easily adapted to the periodic setting.

Given the quasilinear nature of the Benjamin-Ono equation, here it is important to specify
the meaning of well-posedness. This is summarized in the following properties:

(i) Existence of regular solutions: For each initial data �0 2 H 3 there exists a unique global
solution � 2 C.RIH 3/.
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