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NON-COMPACT FORM OF THE ELEMENTARY DISCRETE
INVARIANT

by Raphaël Fino

Abstract. — We determine the non-compact form of Vishik’s elementary discrete
invariant for quadrics. As an application, we obtain new restrictions on the possible
values of the elementary discrete invariant by studying the action of Steenrod opera-
tions on the algebraic cycles defining the non-compact form.

Résumé (Forme non-compacte de l’invariant discret élémentaire). — On détermine
la forme non-compacte de l’invariant discret élémentaire de Vishik pour quadriques.
Comme application, on obtient de nouvelles restrictions sur les valeurs possibles de
l’invariant discret élémentaire en étudiant l’action des opérations de Steenrod sur les
cycles algébriques définissant la forme non-compacte.

1. Introduction

LetX be a smooth projective quadric of dimension n over a field F associated
with a non-degenerate F -quadratic form q. The splitting pattern of X is a
discrete invariant that measures the possible Witt indices of qE over all field
extensions E/F (see [4] and [5]). The motivic decomposition type of X is a
discrete invariant which measures in what pieces the Chow motive of X can be
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decomposed. Moreover, Alexander Vishik noticed in [6] that the study of the
interaction between these two invariants provides further information about
both of them.

For this reason, he introduced the generic discrete invariant of quadrics,
a bigger discrete invariant containing the splitting pattern and the motivic
decomposition type invariants as faces, see [7] and [9]. The Generic Discrete
Invariant GDI(X) is defined as follows. Let K/F be a splitting field extension
of q. Let us denote [n/2] as d. For any i ∈ {0, . . . , d}, we write Gi for the
grassmannian of i-dimensional totally q-isotropic subspaces (in particular G0
is the quadric X). Then GDI(X) is the collection of the subalgebras of rational
elements

Ch∗(Gi) := Image (Ch∗(Gi)→ Ch∗(GiK))

for i ∈ {0, . . . , d}, where Ch stands for the Chow ring with Z/2Z-coefficients
(an algebraic cycle already defined at the level of the base field F is called
rational).

In his paper [10] dedicated to the Kaplansky’s conjecture on the u-invariant
of a field, A.Vishik used the elementary discrete invariant of quadrics, a hand-
ier invariant than the GDI as it only deals with some particular cycles in
Ch∗(GiK). More precisely, for any i ∈ {0, . . . , d}, we denote by F(0, i) the
partial orthogonal flag variety of q-isotropic lines contained in i-dimensional
totally q-isotropic subspaces. One can consider the diagram

X F(0, i)
π(0,i)
oo

π(0,i)
// Gi,

given by the natural projections and, for 0 ≤ j ≤ d, we set

Zin−i−j := π(0,i)∗ ◦ π
∗
(0,i) (lj) ∈ CHn−i−j (GiK) ,

where CH stands for the Chow ring with Z-coefficients and lj is the class in
CHj(XK) of a j-dimensional totally isotropic subspace of P ((Vq)K) (with Vq
the F -vector space associated with q). We set zin−i−j := Zin−i−j (mod 2) ∈
Chn−i−j(GiK), with Ch being the Chow ring with Z/2Z-coefficients. The cycles
zin−i−j are the elementary classes defining the elementary discrete invariant
EDI(X):

Definition 1.1. — The elementary discrete invariant EDI(X) is the col-
lection of subsets EDI(X, i) consisting of those integers m such that zim is
rational.

Furthermore, for any r ≥ 1, the Chow motive of Xr with Z/2Z-coefficients
decomposes into a direct sum of shifts of the motive of someGi, see [2, Corollary
91.8]. Therefore, knowing GDI(X) is the equivalent to knowing

Ch∗(Xr) := Image (Ch∗(Xr)→ Ch∗(Xr
K))
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for all r ≥ 1. Hence, the collection of the latter subalgebras constitutes a non-
compact (in the sense that one has to consider infinitely many objects) form of
GDI(X). For the same reason, there exists a non-compact form of EDI(X)
(with defining cycles living in Ch∗(Xr

K)), which we determine in the this work:
for any i ∈ {0, . . . , d}, let us denote by sym : CH∗(Xi+1)→ CH∗(Xi+1) the ho-
momorphism Σs∈Si+1s∗, where s : Xi+1 → Xi+1 is the isomorphism associated
with a permutation s. For 0 ≤ j ≤ d, we set

ρi,j := sym
((
×i−1
k=0h

k
)
× lj

)
∈ CHn−j+i(i−1)/2 (Xi+1

K

)
,

where × is the external product and hk is the k-th power of the hyperplane
section class h ∈ CH1(X) (always rational). Note that ρ0,j = Z0

n−j = lj . The
symmetric cycles ρi,j (mod 2) are the classes defining the non-compact form of
EDI(X):

Theorem 1.2. — Let 1 ≤ i ≤ d and 0 ≤ j ≤ d. The cycle zin−i−j is rational
if and only if the cycle ρi,j (mod 2) is rational.

Because of the stability of rational cycles under pull-backs of diagonal mor-
phisms and the possibility of a refined use of Steenrod operations of cohomo-
logical type, studying the non-compact form provides new restrictions on the
possible values of EDI(X), as illustrated by Sections 4 and 5.

Moreover, Theorem 1.2 reduces certain questions about the rationality of al-
gebraic cycles on orthogonal grassmannians to the sole level of quadrics. For ex-
ample, it allows one to reformulate both Vishik’s conjecture [8, Conjecture 3.11]
and the conjecture [9, Conjecture 0.13] on the dimensions of Bruno Kahn.

In Section 2, we introduce some basic tools which are required in Section 3,
where we prove Theorem 1.2, using mainly compositions of correspondences
and Chern classes of vector bundles over orthogonal grassmannians.

2. Preliminaries

In this section, we continue to use the notation introduced in Section 1.

2.1. Rational cycles on powers of quadrics. — We refer to [2, § 68] for an intro-
duction to cycles on powers of quadrics. For any 1 ≤ i ≤ d and 0 ≤ j ≤ i− 1,
we set

∆i,j := sym
((
×i−1
k=0h

k
)
× lj

)
+

d∑
m=i

sym
((
×i−1
k=0
k 6=j

hk
)
× hm × lm

)
in Chn−j+i(i−1)/2(Xi+1

K ). If n = 2d, we choose an orientation ld of the quadric.

Lemma 2.1. — For any 1 ≤ i ≤ d and 0 ≤ j ≤ i−1, the cycle ∆i,j is rational.
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Proof. — We proceed by induction on i. In Chn(X2
K), the cycle ∆1,0 or

∆1,0 +hd×hd, depending on whether l2d = 0 or not, is the class of the diagonal.
Therefore, the cycle ∆1,0 is rational. Let σ ∈ Si+1 be a cyclic permutation
(with i ≥ 2). For 0 ≤ j ≤ i − 2, the induction hypothesis step is provided by
the identity

∆i,j =
i∑
l=0

σl∗
(
∆i−1,j × hi−1) in Ch

(
Xi+1
K

)
.

It just remains to show that the cycle ∆i,i−1 is rational to complete the proof.
In Ch(Xi+1

K ), one has

∆i,i−1 =
d∑

m=i−1
sym

((
×i−2
k=0h

k
)
× lm × hm

)
=

d∑
m=0

sym
((
×i−2
k=0h

k
)
× lm × hm

)
and the latter sum can be rewritten as∑

s∈Ai+1

s∗
((
×i−2
k=0h

k
)
×∆1,0

)
.

Thus, the cycle ∆i,i−1 is rational. �

2.2. Correspondences. — We refer to [2, § 62] for an introduction to Chow-
correspondences.

For any 1 ≤ i ≤ d, we denote by θi the class of the subvariety

{(y, x1, . . . , xi+1) | x1, . . . xi+1 ∈ y} ⊂ Gi ×Xi+1

in CH(Gi ×Xi+1) and we view the cycle θi as a correspondence Gi  Xi+1.
We set

(1) ηi :=
i∏

k=1

(
IdGi × pXi

k

)∗
([F(i, 0)]) ∈ CH(Gi ×Xi),

with pXi
k
the projection from Xi to the k-th coordinate. For any integer i ≤

s ≤ d, we write

W i
s−i := π(0,i)∗ ◦ π

∗
(0,i)(hs) ∈ CHs−i(Gi),

and wis−i := W i
s−i (mod 2) ∈ Chs−i(Gi). Since the variety XK is cellular, the

cycle [F(i, 0)] decomposes as

(2) [F(i, 0)] =
d∑
s=0

zin−i−s × hs +
d∑
s=i

wis−i × ls in Ch(GiK ×XK),

tome 147 – 2019 – no 2



NON-COMPACT ELEMENTARY DISCRETE INVARIANT 293

where ld has to be replaced by the other class l′d of maximal totally isotropic
subspaces if n = 2d and l2d is not zero, i.e., if four divides n (see [2, Theo-
rem 66.2]).

The two following lemmas, where we write p with underlined target for
projections, can be proven the same way [3, Lemmas 3.2 and 3.10] have been
proven but with Zin−i−j (resp. zin−i−j) instead of Zin−i (resp. zin−i).

Lemma 2.2. — For any 1 ≤ i ≤ d, 0 ≤ j ≤ d and x ∈ CH(XK), one has(
(θi)∗(Zin−i−j)

)
∗ (x) =

pGi×Xi ∗

(
p∗Gi×Xi

(
π(0,i)∗ ◦ π

∗
(0,i)(x) · Zin−i−j

)
· ηi
)
,

where the cycle (θi)∗(Zin−i−j) is viewed as a correspondence XK  Xi
K .

For any 1 ≤ i ≤ d, we write F(i−1, i) for the partial orthogonal flag variety
of (i − 1)-dimensional totally isotropic subspaces contained in i-dimensional
totally isotropic subspaces and we consider the diagram

Gi−1 F(i− 1, i)
π(i−1,i)
oo

π(i−1,i)
// Gi,

given by the natural projections.

Lemma 2.3. — For any 2 ≤ i ≤ d, 0 ≤ j ≤ d and i ≤ m ≤ d, the cycle

pGi×Xi∗

(
wim−i · zin−i−j · ηi

)
∈ Ch(Xi

K),

where we write ηi for ηi (mod 2), and this can be rewritten as

m∑
s=0

min(m−s,i)∑
k=max(i−s,0)

pGi−1×Xi−1∗

(
wi−1
m−s−k · σ

k
i−1 · zi−1

n−i+1−j · ηi−1
)
× hs,

with σki−1 = π(i−1,i)∗
◦ π∗(i−1,i)(zin−2i+k) ∈ Chj(Gi−1K).

3. Equivalence

In this section, we continue to use notation and material introduced in the
previous sections and we prove Theorem 1.2.

For 1 ≤ i ≤ d and 0 ≤ j ≤ i− 1, we set

αi,j := (θi)∗(Zin−i−j) + ρi,j ∈ CH
(
Xi+1
K

)
,

and we view the cycle αi,j as a correspondence XK  Xi
K .
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