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SPACE-TIME PARAPRODUCTS
FOR PARACONTROLLED CALCULUS, 3D-PAM
AND MULTIPLICATIVE BURGERS EQUATIONS

 I BAILLEUL, F BERNICOT
 D FREY

A. – We sharpen in this work the tools of paracontrolled calculus in order to provide a
complete analysis of the parabolic Anderson model equation and Burgers system with multiplicative
noise, in a 3-dimensional Riemannian setting, in either bounded or unbounded domains. With that aim
in mind, we introduce a pair of intertwined space-time paraproducts on parabolic Hölder spaces, with
good continuity, that happens to be pivotal and provides one of the building blocks of higher order
paracontrolled calculus.

R. – Nous enrichissons dans ce travail les outils du calcul paracontrôlé afin de fournir une
analyse complète de l’équation du modèle parabolique d’Anderson et du système Burgers avec un
bruit multiplicatif, dans un cadre riemannien de dimension 3, dans des domaines bornés ou non. Dans
ce but, nous introduisons une paire de paraproduits espace-temps agissant sur les espaces de Hölder
paraboliques, qui se révèle cruciale et fournit l’un des éléments constitutifs du calcul paracontrôlé
d’ordre supérieur.

1. Introduction

It is probably understated to say that the work [19] of Hairer has opened a new era in
the study of stochastic singular parabolic partial differential equations. It provides a setting
where one can make sense of a product of a distribution with parabolic non-positive Hölder
regularity index, say a, with a function with non-negative regularity index, say b, even in the
case where a C b is non-positive, and where one can make sense of, and solve, a large class
of parabolic stochastic singular partial differential equations by fixed point methods. The
parabolic Anderson model equation (PAM)

(1.1) .@t C L/u D u�;
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studied in Section 5 in a 3-dimensional unbounded background, is an example of such an
equation, as it makes sense in that setting to work with a distribution � of Hölder expo-
nent˛ � 2, for some˛ < 1

2
, while one expects the solutionu to the equation to be of parabolic

Hölder regularity ˛, making the product u� ill-defined since ˛ C .˛ � 2/ � 0.
The way out of this quandary found by Hairer has its roots in Lyons’ theory of rough

paths, which already faced the same problem. Lyons’ theory addresses the question of
making sense of, and solving, controlled differential equations

(1.2) dzt D Vi .zt / dX
i
t

in Rd say, driven by an R`-valued 1
p

-Hölder control X D
�
X1; : : : ; X`

�
, with p � 2,

and where Vi are sufficiently regular vector fields on Rd . Typical realizations of a Brownian
path are 1

p
-Hölder continuous, with p > 2, for instance. One expects a solution path to

equation (1.2) to be 1
p

-Hölder continuous as well, in which case the product Vi .zt / dX it , or

the integral
R t
0
Vi .zs/ dX

i
s , cannot be given an intrinsic meaning since 1

p
C
�
1
p
� 1

�
� 0.

Lyons’ deep insight was to realize that one can make sense of, and solve, equation (1.2) if
one assumes one is given an enriched version of the driving signal X that formally consists
ofX together with its non-existing iterated integrals. The theory of regularity structures rests
on the same philosophy, and the idea that the enriched noise should be used to give a local
description of the unknown u, in the same way as polynomials are used to define and describe
locally C k functions.

At the very same time that Hairer built his theory, Gubinelli, Imkeller and Perkowski
proposed in [17] another implementation of that philosophy building on a different notion
of local description of a distribution, using paraproducts on the torus. The machinery of
paracontrolled distributions introduced in [17] rests on a first order Taylor expansion of a
distribution that happened to be sufficient to deal with the stochastic parabolic Anderson
equation (1.1) on the 2-dimensional torus, the stochastic additive Burgers equation in one
space dimension [17], theˆ43 equation on the 3-dimensional torus [12, 28] and the stochastic
Navier-Stokes equation with additive noise [26, 27]. The KPZ equation can also be dealt with
using this setting [18]. Following Bony’s approach [9], the paraproduct used in [17] is defined
in terms of Fourier analysis and does not allow for the treatment of equations outside the
flat background of the torus or the Euclidean space, if one is ready to work with weighted
functional spaces. The geometric restriction on the background was greatly relaxed in our
previous work [3] by building paraproducts from the heat semigroup associated with the
operator L in the semilinear equation. A theory of paracontrolled distributions can then be
considered in doubling metric measure spaces where one has small time Gaussian estimates
on the heat kernel and its ‘gradient’—see [3]. This setting already offers situations where
the theory of regularity structures is not known to be working. The stochastic parabolic
Anderson model equation in a 2-dimensional doubling manifold was considered in [3] as
an example. The first order ‘Taylor expansion’ approach of paracontrolled calculus seems
however to restrict a priori its range of application, compared to the theory of regularity
structures, and it seems clear that a kind of higher order paracontrolled calculus is needed
to extend its scope. We tackle in the present work the first difficulty that shows off in this
program, which is related to the crucial use of commutator estimates between the heat
operator and a paraproduct, which is one of the three workhorses of the paracontrolled
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calculus method, together with Schauder estimates and another continuity result on some
commutator. The development of a high order paracontrolled calculus is the object of
another work [4].

Working in unbounded spaces with weighted functional spaces requires a careful treat-
ment which was not done so far. We shall illustrate the use of our machinery on two exam-
ples: The parabolic Anderson model (PAM) equation (1.1) in a possibly unbounded 3-dimen-
sional Riemannian manifold, and Burgers equation with multiplicative noise in the 3-dimen-
sional closed Riemannian manifold. Hairer and Labbé have very recently studied the (PAM)
equation in R3 from the point of view of regularity structures [21]—see also the work [22] of
Hairer and Pardoux. They had to introduce some weights$ to get a control on the growth of
quantities of interest at spatial infinity. A non-trivial part of their work consists into tracking
the time-behavior of their estimates, with respect to the time, which requires the use of time-
dependent weights. For the same reason, we also need to use weighted spaces and working
with the weights of [22, 21] happens to be convenient. Our treatment is however substantially
easier, as we do not need to travel backwards in time such as required in the analysis of the
reconstruction operator in the theory of regularity structures. As a matter of fact, our results
on the (PAM) equation give an alternative approach, and provide a non-trivial extension, of
the results of [21] to a non-flat setting, with a possibly wider range of operatorsL than can be
treated presently in the theory of regularity structures. As for Burgers equation with multi-
plicative noise, it provides a description of the random evolution of a velocity field on the
3-dimensional torus, subject to a random rough multiplicative forcing, and whose dynamics
reads

(1.3) .@t C L/uC .u � r/u DM�u;

where � is a 3-dimensional white noise with independent coordinates, and

M�u WD
�
�1u1; �2u2; �3u3

�
;

for the velocity field u D
�
u1; u2; u3

�
W M 3 ! R3. With zero noise �, this 3-dimen-

sional Burgers system plays a very important role in the theory of PDEs coming from
fluid mechanics, and later from condensed matter physics and statistical physics. It has
been proposed by Burgers in the 30’s as a simplified model of dynamics for Navier-Stokes
equations. A change of variables, called after Cole and Hopf, can be used to reduce the
deterministic quasilinear parabolic equation to the heat equation, thus allowing the deriva-
tion of exact solutions in closed form. Despite this fact, the study of Burgers system is still
very fashionable as a benchmark model that can be used to understand the basic features of
the interaction between nonlinearity and dissipation. Motivated by the will to turn Burgers
equation into a model for turbulence, stochastic variants have been the topic of numerous
recent works [8, 23, 24, 19, 17, 18], where a random forcing term is added in the equation,
mainly in one space dimension, with an additive space-time white noise—that is with a
space-time white noise instead of M�u with � space white noise. The Cole-Hopf transfor-
mation can formally be used again, and turns a solution to the 1-dimensional stochastic
Burgers equation with additive space-time noise to the heat equation with multiplicative
space-time noise, with a very singular noise, such as detailed in [18]. A similar change of
variable trick can be used for the study of the above multidimensional stochastic Burgers
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