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Neural continuum networks are an important aspect of the modeling of
macroscopic parts of the cortex. Two classes of such networks are consid-
ered: voltage and activity based. In both cases, our networks contain an
arbitrary number, n, of interacting neuron populations. Spatial nonsym-
metric connectivity functions represent cortico-cortical, local connections,
and external inputs represent nonlocal connections. Sigmoidal nonlinear-
ities model the relationship between (average) membrane potential and
activity. Departing from most of the previous work in this area, we do not
assume the nonlinearity to be singular, that is, represented by the discon-
tinuous Heaviside function. Another important difference from previous
work is that we relax the assumption that the domain of definition where
we study these networks is infinite, that is, equal to R or R

2. We explicitly
consider the biologically more relevant case of a bounded subset � of
R

q, q = 1, 2, 3, a better model of a piece of cortex. The time behavior of
these networks is described by systems of integro-differential equations.
Using methods of functional analysis, we study the existence and unique-
ness of a stationary (i.e., time-independent) solution of these equations in
the case of a stationary input. These solutions can be seen as ‘persistent’;
they are also sometimes called bumps. We show that under very mild as-
sumptions on the connectivity functions and because we do not use the
Heaviside function for the nonlinearities, such solutions always exist. We
also give sufficient conditions on the connectivity functions for the solu-
tion to be absolutely stable, that is, independent of the initial state of the
network. We then study the sensitivity of the solutions to variations of
such parameters as the connectivity functions, the sigmoids, the external
inputs, and, last but not least, the shape of the domain of existence � of
the neural continuum networks. These theoretical results are illustrated
and corroborated by a large number of numerical experiments in most of
the cases 2 ≤ n ≤ 3, 2 ≤ q ≤ 3.
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1 Introduction

We analyze the ability of neuronal continuum networks to display localized
persistent activity, or bumps. This type of activity is related, for example, to
working memory, which involves holding and processing information on
the timescale of seconds. Experiments in primates have shown that there
exist neurons in the prefrontal cortex that have high firing rates during
the period the animal is “remembering” the spatial location of an event
before using the information being remembered (Colby, Duhamel, & Gold-
berg, 1995; Funahashi, Bruce, & Goldman-Rakic, 1989; Miller, Erickson, &
Desimone, 1996). Realistic models for this type of activity have involved
spatially extended networks of coupled neural elements or neural masses
and the study of spatially localized areas of high activity in these systems.
A neuronal continuum network is first built from a “local” description of
the dynamics of a number of interacting neuron populations where the
spatial structure of the connections is neglected. This local description can
be thought of as representing such a structure as a cortical column (Mount-
castle, 1957, 1997; Buxhoeveden & Casanova, 2002). We call it a neural mass
(Freeman, 1975). Probably the best-known neural mass model is that of
Jansen and Rit (Jansen, Zouridakis, & Brandt, 1993), based on the original
work of Lopes da Silva and colleagues (Lopes da Silva, Hoeks, & Zetterberg,
1974; Lopes da Silva, van Rotterdam, Barts, van Heusden, & Burr, 1976) and
of Van Rotterdam and colleagues (van Rotterdam, Lopes da Silva, van den
Ende, Viergever, & Hermans, 1982). A complete analysis of the bifurca-
tion diagram of this model can be found in Grimbert and Faugeras (2006).
The model has been used to simulate evoked potentials: EEG activities in
normal (Jansen & Rit, 1995) and epileptic patients (Wendling, Bartolomei,
Bellanger, & Chauvel, 2001; Wendling, Bellanger, Bartolomei, & Chauvel,
2000). In a similar vein, David and Friston (2003) have used an extension of
this model to simulate a large variety of cerebral rhythms (α, β, γ , δ, and γ )
in MEG/EEG simulations. Another important class of such models is the
one introduced by Wilson and Cowan (1973); Hoppenstaedt & Izhikevich
(1997).

These local descriptions are then assembled spatially to form the
neuronal continuum network. This continuum network is meant to
represent a macroscopic part of the neocortex, for example, a visual
area such as V1. The spatial connections are models of cortico-cortical
connections. Other, nonlocal connections with, for example, such visual
areas as the lateral geniculate nucleus, or V2, are also considered. Other
researchers have used several interconnected neural masses to simu-
late epileptogenic zones (Wendling et al., 2000, 2001; Lopes da Silva
et al., 2003) or to study the connectivity between cortical areas (David,
Cosmelli, & Friston, 2004). In this letter we consider a continuum of neural
masses.
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Figure 1: A model with six interacting neural populations.

2 The Models

We briefly discuss local and spatial models.

2.1 The Local Models. We consider n interacting populations of neu-
rons such as those shown in Figure 1. The figure is inspired by the work of
Alex Thomson (Thomson & Bannister, 2003) and Wolfgang Maass (Haeusler
& Maass, 2007). It shows six interacting populations of neurons. Black in-
dicates excitation and gray inhibition. The thickness of the arrows pertains
to the strength of the interaction. In this example, the six populations are
located in layers 2/3, 4, and 5 of the neocortex. Each population being
described by its state (defined below), we derive from first principles the
equations that describe the variations over time of the states of the different
interacting populations.

Our derivation follows closely that of Ermentrout (1998). We consider
that each neural population i is described by its average membrane
potential Vi (t) or its average instantaneous firing rate νi (t), the relation
between the two quantities being of the form νi (t) = Si (Vi (t)) (Gerstner and
Kistler, 2002; Dayan & Abbott, 2001), where Si is sigmoidal and smooth.
The functions Si , i = 1, . . . , n, satisfy the following properties introduced
in the following definition:

Definition 1. For all i = 1, . . . , n, |Si | ≤ Sim (boundedness). We note Sm =
maxi Sim. For all i = 1, . . . , n, the derivative S′

i of Si is positive and bounded by
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Figure 2: Three examples of sigmoid functions for different values of the pa-
rameter s. See the text.

S′
im > 0 (boundedness of the derivatives). We note DSm = maxi S′

im and DSm the
diagonal matrix diag(S′

im).

A typical example of a function Si is given in equation 2.1:

Si (v) = 1
1 + e−si (v−θi )

. (2.1)

This function is symmetric with respect to the “threshold” potential θi and
varies between 0 and 1. The positive parameter si controls the slope of the
ith sigmoid at v = θi .

This function is shown in Figure 2 for the values of the parameters θ = 0
and s = 0.5, 1, 10. We have Sim = 1 and S′

im = s. When s → ∞, S converges
to the Heaviside function Y defined by

Y(v) =
{

0 if v < 0

1 otherwise
.

Neurons in population j are connected to neurons in population i . A
single action potential from neurons in population j is seen as a postsynaptic
potential P SPi j (t − s) by neurons in population i , where s is the time of the
spike hitting the terminal and t the time after the spike. We neglect the
delays due to the distance traveled down the axon by the spikes.

Assuming that they sum linearly, the average membrane potential of
population i due to action potentials of population j is

Vi (t) =
∑

k

P SPi j (t − tk),
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where the sum is taken over the arrival times of the spikes produced by
the neurons in population j . The number of spikes arriving between t and
t + dt is ν j (t)dt. Therefore, we have

Vi (t) =
∑

j

∫ t

0
P SPi j (t − s)ν j (s) ds =

∑
j

∫ t

0
P SPi j (t − s)Sj (Vj (s)) ds,

or, equivalently,

νi (t) = Si


∑

j

∫ t

0
P SPi j (t − s)ν j (s) ds


 . (2.2)

The P SPi j can depend on several variables in order to account for adapta-
tion and learning, among other examples.

There are two main simplifying assumptions that appear in the literature
(Ermentrout, 1998) and produce two different models.

2.1.1 The Voltage-Based Model. The assumption (Hopfield, 1984) is that
the postsynaptic potential has the same shape no matter which presynaptic
population caused it; however, the sign and amplitude may vary. This leads
to the relation

P SPi j (t) = wi j P SPi (t).

If wi j > 0, the population j excites population i , whereas it inhibits it when
wi j < 0.

Finally, if we assume that P SPi (t) = Ai e−t/τi Y(t), or equivalently that

τi
d P SPi (t)

dt
+ P SPi (t) = Aiδ(t), (2.3)

we end up with the following system of ordinary differential equations,

τi
dVi (t)

dt
+ Vi (t) =

∑
j

wi j Sj (Vj (t)) + I i
ext(t), (2.4)

that describes the dynamic behavior of a cortical column. We have inco-
porated the constant Ai in the weights wi j and added an external current
Iext(t) to model the nonlocal connections of population i . We introduce the
n × n matrixes W such that Wi j = wi j/τi and the function S, R

n → R
n such

that S(x) is the vector of coordinates Si (xi ), if x = (x1, . . . , xn). We rewrite
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equation 2.4 in vector form and obtain the following system of n ordinary
differential equations,

V̇ = −LV + W S(V) + Iext, (2.5)

where L is the diagonal matrix L = diag(1/τi).
In terms of units, the left- and right-hand sides of this equations are in

units of, say, mV × ms−1. Therefore, Iext, despite its name, is not a current.
Note that since S(V) is an activity, its unit is ms−1, and hence W is in mV.

2.1.2 The Activity-Based Model. The assumption is that the shape of a
postsynaptic potential (PSP) depends on only the nature of the presynaptic
cell, that is,

P SPi j (t) = wi j P SPj (t).

As above, we suppose that P SPi (t) satisfies the differential equation 2.3 and
define the time-averaged firing rate to be

Aj (t) =
∫ t

0
P SPj (t − s)ν j (s) ds.

A similar derivation yields the following set of n ordinary differential equa-
tions:

τi
d Ai (t)

dt
+ Ai (t) = Si


∑

j

wi j Aj (t) + I i
ext(t)


 i = 1, . . . , n.

We include the τi s in the sigmoids Si and rewrite this in vector form:

Ȧ = −LA + S(W A + Iext). (2.6)

The units are ms−2 for both sides of the equation. W is expressed in mV ×
ms, and Iext is in mV.

2.2 The Continuum Models. We now combine these local models to
form a continuum of neural masses, for example, in the case of a model of
a significant part � of the cortex. We consider a subset � of R

q , q = 1, 2, 3,
which we assume to be connected and compact (i.e., closed and bounded).
We note |�| its Lebesgue measure (length, area, volume). This encompasses
several cases of interest.

When q = 1, we deal with one-dimensional sets of neural masses.
Although this appears to be of limited biological interest, this is one of the
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most widely studied cases because of its relative mathematical simplicity
and because of the insights one can gain of the more realistic situations.

When q = 2, we discuss properties of two-dimensional sets of neural
masses. This is perhaps more interesting from a biological point of view
since � can be viewed as a piece of cortex where the third dimension, its
thickness, is neglected. This case has received by far less attention than the
previous one, probably because of the increased mathematical difficulty.
Note that we could also take into account the curvature of the cortical sheet
at the cost of an increase in mathematical difficulty. This is outside the scope
of this letter.

Finally q = 3 allows us to discuss properties of volumes of neural masses,
such as cortical sheets where their thickness is taken into account (Kandel,
Schwartz, & Jessel, 2000; Chalupa & Werner, 2004).

The theoretical results presented in this letter are independent of the
value of q .

We note V(r, t) (resp., A(r, t)) the n-dimensional state vector at the point
r of the continuum and at time t. We introduce the n × n matrix function
W(r, r′), which describes how the neural mass at point r′ influences that at
point r at time t. We call W the connectivity matrix function. In particular,
W(r, r) = W, the matrix that appears in equations 2.5 and 2.6. More precisely,
Wi j (r, r′) describes how population j at point r′ influences population i at
point r at time t. Equation 2.5 can now be extended to

Vt(r, t) = −LV(r, t) +
∫

�

W(r, r′)S(V(r′, t)) dr′ + Iext(r, t), (2.7)

and equation 2.6 to

At(r, t) = −LA(r, t) + S
(∫

�

W(r, r′)A(r′, t)) dr′ + Iext(r, t)
)

. (2.8)

It is important to discuss again the units of the quantities involved
in these equations. For equation 2.7, as for equation 2.4, the unit is
mV × ms−1 for both sides. Because of the spatial integration, W is in
mV × ms−1 × mm−q , and q is the dimension of the continuum. To obtain a
dimensionless equation, we normalize (i.e., divide both sides of the equa-
tion) by the Frobenius norm ‖W‖F of the connectivity matrix function W
(see section A.1 for a definition). Equivalently, we assume that ‖W‖F = 1.

We have given elsewhere (Faugeras, Grimbert, & Slotine, 2007)—but see
proposition 2 below for completeness—sufficient conditions on W and Iext

for equations 2.7 and 2.8 to be well defined and studied the existence and
stability of their solutions for general external currents. In this letter, we
analyze in detail the case of stationary external currents (independent of
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the time variable) and investigate the existence and stability of the corre-
sponding stationary solutions of 2.7 and 2.8.

A significant amount of work has been devoted to this or closely related
problems, starting perhaps with the pioneering work of Wilson and Cowan
(1973). A fairly recent review of this work, and much more, can be found in
Coombes (2005). Amari (1977) investigated the problem in the case n = q =
1 when the sigmoid function is approximated by a Heaviside function and
the connectivity function has a Mexican hat shape. He proved the existence
of stable bumps in this case. His work has been extended to different firing
rate and connectivity functions (Gutkin, Ermentrout, & O’Sullivan, 2000;
Laing, Troy, Gutkin, & Ermentrout, 2002; Laing & Troy, 2003; Rubin & Troy,
2004; Guo & Chow, 2005a, 2005b).

The case n = 1, q = 2 has been considered by several authors, including
Pinto and Ermentrout (2001a, 2001b) for general firing rate functions and
gaussian-like connectivity functions (Blomquist, Wyller, & Einevoll, 2005)
when the firing rate functions are approximated by Heaviside functions,
and more recently for translation-invariant kernels including some discus-
sion of sigmoids in Owen, Laing, and Coombes (2007).

Extending these analyses to a two- or three-dimensional continuum is
difficult because of the increase in the degrees of freedom in the choice
of the connectivity function. The case n = 2, q = 1 has been studied in
Werner and Richter (2001) and Bressloff (2005) when the firing rate functions
are approximated by Heaviside functions and the connectivity function is
circularly symmetric, while the case n = 2, q = 2 is mentioned as difficult
in Doubrovinski (2005).

In all of these contributions, the proof of the existence of a bump
solution is based on Amari’s original argument (1977), which works only
when q = 1 and the firing rate function is approximated by a Heaviside
function. Kubota and Aihara (2005); Kishimoto and Amari (1979) consider
sigmoids in the case q = 1 for translation-invariant symmetric connectivity
functions. Solutions are usually constructed using a variant of the method
of the singular perturbation construction (Pinto & Ermentrout, 2001b).
Sufficient conditions for their stability are obtained by a linear stability
analysis, which in general requires the use of Heaviside functions instead of
sigmoids.

The approach that we describe in this letter is a significant departure
from previous ones. By using simple ideas of functional analysis, we are
able to:

� Prove the existence and uniqueness of a stationary solution to
equations 2.7 and 2.8 for any dimensions n and q , arbitrary connec-
tivity functions, and general firing rate functions.

� Obtain very simple conditions for the absolute stability of the solution
in terms of the spectrum of the differential of the nonlinear operator
that appears on the right-hand side of equations 2.7 and 2.8.
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� Construct a numerical approximation as accurately as needed of the
solution, when it exists, for any stationary input.

� Characterize the sensitivity of the solutions to variations of the pa-
rameters, including the shape of the domain �.

To be complete, let us point out that equations of the type 2.7 and 2.8 have
been studied in pure mathematics (see e.g., Hazewinkel, 2001). They are of
the Hammerstein type (Hammerstein, 1930; Tricomi, 1985). This type of
equation has received some recent attention (see Appell & Chen, 2006), and
progress has been made toward a better understanding of their solutions.
Our contributions are the articulation of the models of networks of neural
masses with this type of equation, the characterization of persistent activity
in these networks as fixed points of Hammerstein equations, the proof of
the existence of solutions, the characterization of their stability, and the
analysis of their sensitivity to variations of the parameters involved in the
equations.

The rest of the letter is organized as follows. In section 3, we prove
that under some mild hypotheses about the connectivity matrix, because
� is bounded, there always exist stationary solutions to the neural field
equations, 2.7 and 2.8, for stationary inputs. In section 4, we provide
sufficient conditions for these stationary solutions to be stable. Section 5
provides numerical support for the theorems of the previous two sections:
because we know that there exist stable solutions, we can derive a robust
and accurate numerical scheme to compute them for various values of
the parameters. In section 6, we probe the sensitivity of the solutions to
variations of these parameters. This is a first step in the direction of the
study of their bifurcations, which will be the topic of a forthcoming paper.
In section 7, we summarize our results and open some perspectives.

3 Existence of Stationary Solutions

In this section we deal with the problem of the existence of stationary
solutions to equations 2.7 and 2.8 for a given stationary external current
Iext.

As indicated in the previous section, we use functional analysis to solve
this problem. Let F be the set L2

n(�) of square integrable functions from �

to R
n. This is a Hilbert, hence a Banach, space for the usual inner product,

〈V1, V2〉 =
∫

�

V1(r)T V2(r) dr,

where V is the complex conjuguate of the vector V. This inner product
induces the norm ‖V‖2

F = ∑
i=1,...,n

∫
�

|Vi (r)|2 dr (see section A.1). F is the
state space. Another important space is L2

n×n(� × �), the space of square
integrable n × n matrices (see section A.1 for a precise definition). We
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assume that the connectivity matrix functions W(·, ·) are in this space (see
propositions 1 and 2 below).

We also identify L2
n×n(� × �) with L (F) (the space of continuous linear

operators on F) as follows. If W ∈ L2
n×n(� × �), it defines a linear mapping

W : F −→ F such that

X → W · X = ∫
�

W(., r′)X(r′)dr′ .

For example, this allows us to write equations 2.7 and 2.8:

Vt =−LV + W · S (V) + Iext

At =−LA + S(W · A + Iext).

We first recall some results on the existence of a solution to equations 2.7
and 2.8 that will be used in the sequel.

We denote by J a closed interval of the real line containing 0. A state vector
X(r, t) is a mapping X : J → F , and equations 2.7 and 2.8 are formally recast
as an initial value problem:

{
X′(t) = f (t, X(t))

X(0) = X0
, (3.1)

where X0 is an element of F and the function f from J × F is defined by the
right-hand side of equation 2.7, in which case we call it fv , or equation 2.8,
in which case we call it fa . In other words, equations 2.7 and 2.8 become
differential equations defined on the Hilbert space F .

We need the following two propositions, which we quote without proof
(Faugeras et al., 2007):

Proposition 1. If the following two hypotheses are satisfied,

1. The connectivity function W is in L2
n×n(� × �) (see section A.1),

2. At each time instant t ∈ J the external current I is in C(J ;F), the set of
continuous functions from J to F ,

then the mappings fv and fa are from J × F to F , continuous, and Lipschitz
continuous with respect to their second argument, uniformly with respect to the
first.

Proposition 2. If the following two hypotheses are satisfied,

1. The connectivity function W is in L2
n×n(� × �),

2. The external current I ext is in C(J ;F), the set of continuous functions from
J to F ,
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then for any function X0 in F , there is a unique solution X, defined on R (and not
only on J ) and continuously differentiable, of the abstract initial value problem,
equation 3.1, for f = fv and f = fa .

This proposition says that given the two hypotheses and the initial con-
dition, there exists a unique solution to equation 2.7 or 2.8 and that this
solution is in C1(R;F), the set of continuously differentiable functions from
R to F .

We now turn our attention to a special type of solution of equations 2.7
and 2.8, corresponding to stationary external currents. We call these solu-
tions, when they exist, stationary solutions. The currents Iext are simply in
F .

A stationary solution of equation 2.7 or 2.8 is defined by

X = f L (X), (3.2)

where the function f L , F → F , is equal to f L
v defined by

f L
v (V)(r) =

∫
�

WL (r, r′)S(V(r′)) dr′ + IL
ext(r), (3.3)

or to f L
a defined by

f L
a (A)(r) = SL

(∫
�

W(r, r′)A(r′) dr′ + Iext(r)
)

, (3.4)

where WL = L−1W, SL = L−1S and IL
ext = L−1Iext.

We now recall:

Definition 2. A continuous mapping M : F → F (linear or nonlinear) is called
compact provided that for each bounded subset B of F , the set M(B) is relatively
compact; that is, its closure is compact.

We then consider the nonlinear mapping gL
v : F → F ,

gL
v (V)(r) =

∫
�

WL (r, r′)S(V(r′)) dr′, (3.5)

and the linear mappings ga and gL
a ,

ga (A)(r) =
∫

�

W(r, r′)A(r′) dr′, (3.6)

gL
a (A)(r) =

∫
�

WL (r, r′)A(r′) dr′. (3.7)
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We have the following:

Proposition 3. If W ∈ L2
n×n(� × �), gL

v and gL
a are compact operators of F .

Proof. We know from proposition 1 that gL
v is continuous and prove that for

each bounded sequence {Vn}∞n=1 of F , there exists a subsequence {Vnj }∞j=1

such that gL
v (Vnj ) is convergent in F .

Because of definition 1 of S, the sequence {An = S(Vn)}∞n=1 is bounded in
F by C = Sm

√
n|�| > 0. We prove that there exists a subsequence {Anj }∞j=1

such that {gL
a (Anj ) = gL

v (Vnj )}∞j=1 converges in F .
Since F is separable, its unit ball is weakly compact, and because {An}∞n=1

is bounded, there exists a a subsequence {Anj }∞j=1 of {An}∞n=1 that converges
weakly in F toward A. Because of Fubini’s theorem, for almost all r ∈ �

(noted almost surely), the function r′ → W(r, r′) is in F . Therefore, almost
surely, Bnj = gL

a (Anj ) → B.
Since ‖A‖F ≤ lim inf j→∞ ‖Anj ‖F ≤ C , A is also bounded by C in F . It

is easy to show that ‖Bnj − B‖2
F ≤ 2C‖W‖F , and we can apply Lebesgue’s

dominated convergence theorem to the sequence Bnj (r) − B(r) and conclude
that ‖Bnj − B‖F → 0, that is, gL

v (Vnj ) is convergent in F .
A small variation of the proof shows that gL

a is compact.

From proposition 3 follows:

Proposition 4. Under the hypotheses of proposition 3, if I ext ∈ F , f L
v and f L

a ,
are compact operators of F .

Proof. The operators X → IL
ext and X → Iext are clearly compact under the

hypothesis Iext ∈ F ; therefore, f L
v is the sum of two compact operators,

hence compact. For the same reason, ga + Iext is also compact, and so is
f L
a = SL (ga + Iext) because SL is smooth and bounded.

We can now prove:

Theorem 1. If W ∈ L2
n×n(� × �) and Iext ∈ F , there exists a stationary solu-

tion of equations 2.7 and 2.8.

Proof. A stationary solution of equation 2.7 (resp. of equation 2.8) is a fixed
point of f L

v (resp. f L
a ).

Define the set Cv = {V ∈ F |V = λ f L
v (V) for some 0 ≤ λ ≤ 1}. Because

of lemma A.2 for all V ∈ Cv , we have

‖V‖F ≤ λ(‖gL
v (V)‖F + ‖IL

ext‖F ) ≤ λ(Sm

√
n|�|‖WL‖F + ‖IL

ext‖F ).

Hence, Cv is bounded.
Similarly, define the set Ca = {A ∈ F |A = λ f L

a (A) for some 0 ≤ λ ≤
1}. Because of lemma A.2 for all A ∈ Ca , we have ‖A‖F ≤ λSm

√
n|�|; hence,

Ca is bounded.
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The conclusion follows from Schaefer’s fixed-point theorem (Evans,
1998).

Note that in the proofs of proposition 4 and theorem 1, the assumption
that � is bounded (i.e., that |�| is finite) is essential.

4 Stability of the Stationary Solutions

In this section we give a sufficient condition on the connectivity matrix W to
guarantee the stability of the stationary solutions to equations 2.7 and 2.8.

4.1 The Voltage-Based Model. We define the “corrected maximal” con-
nectivity function Wcm(r, r′) by Wcm = WDSm, where DSm is defined in
definition 1. We also define the corresponding linear operator hm : F → F ,

hm(V)(r) =
∫

�

Wcm(r, r′)V(r′) dr′,

which is compact according to proposition 3. Its adjoint, noted h∗
m is defined1

by

h∗
m(V)(r) =

∫
�

WT
cm(r′, r)V(r′) dr′

and is also compact. Hence the symmetric part hs
m = 1

2 (hm + h∗
m), the sum of

two compact operators, is also compact. Furthermore, we have 〈V, hm(V)〉 =
〈V, hs

m(V)〉, as can be easily verified. It is also self-adjoint since, clearly,
hs

m = hs∗
m .

We recall the following property of the spectrum of a compact self-adjoint
operator in a Hilbert space (see, e.g., Dieudonné, 1960).

Proposition 5. The spectrum of a compact, self-adjoint operator of a Hilbert
space is countable and real. Each nonzero spectral value is an eigenvalue, and the
dimension of the corresponding eigenspace is finite.

We have the following:

Theorem 2. A sufficient condition for the stability of a stationary solution to
equation 2.7 is that all the eigenvalues of the linear compact, self-adjoint operator
hL , s

m be less than 1, where hL , s
m is defined by

hL , s
m (x)(r)= 1

2

∫
�

L−1/2(WT
cm(r ′, r) + Wcm(r, r ′))L−1/2 x(r ′) d r ′ ∀x ∈ F,

1By definition, 〈V1, hm(V2)〉 = 〈h∗
m(V1), V2〉, for all elements V1, V2 of F .
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where hL , s
m is the symmetric part of the linear compact operator hL

m : F → F :

hL
m(x)(r) =

∫
�

L−1/2Wcm(r, r ′)L−1/2 x(r ′) d r ′

Proof. The proof of this theorem is a generalization to the continuum case
of a result obtained by Matsuoka (1992).

Let us note S the function (DSm)−1S and rewrite equation 2.7 for a ho-
mogeneous input Iext as follows:

Vt(r, t) = −LV(r, t) +
∫

�

Wcm(r, r′)S(V(r′, t) dr′ + Iext(r).

Let U be a stationary solution of equation 2.7. Also let V be the unique
solution of the same equation with initially some condition V(0) = V0 ∈
F (see proposition 2). We introduce the new function X = V − U, which
satisfies

Xt(r, t) =−LX(r, t) +
∫

�

Wcm(r, r′)�(X(r′, t)) dr′

=−LX(r, t) + hm(�(X))(r, t),

where the vector �(X) is given by �(X(r, t)) = S(V(r, t)) − S(U(r)) =
S(X(r, t) + U(r)) − S(U(r)). Consider now the functional


(X) =
∫

�

(
n∑

i=1

∫ Xi (r,t)

0
�i (z) dz

)
dr.

We note that

z ≤ �i (z) < 0 for z < 0 and 0 < �i (z) ≤ z

for z > 0, �i (0) = 0, i = 1, . . . , n.

This is because (Taylor expansion with integral remainder)

�i (z) = Si (z + Ui ) − Si (Ui ) = z
∫ 1

0
S′

i (Ui + ζ z) dζ,

and 0 < S′
i ≤ 1 by construction of the vector S. This implies that the func-

tional 
(X) is strictly positive for all X ∈ F = 0 and 
(0) = 0. It also
implies—and this is used in the sequel—that z�i (z) ≥ �i (z)2.
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The time derivative of 
 is readily obtained:

d
(X)
dt

=
∫

�

�T (X(r, t))Xt(r, t)) dr = 〈
�(X), Xt

〉
.

We replace Xt(r, t)) by its value in this expression to obtain

d
(X)
dt

= − 〈
�(X), LX

〉+ 〈
�(X), hm(�(X))

〉
.

Because of a previous remark, we have

XT (r, t))L�(X(r, t)) ≥ �T (X(r, t))L�(X(r, t)),

and this provides an upper bound for d
(X)
dt :

d
(X)
dt

≤ 〈
�(X), (−L+hs

m).�(X)
〉= 〈

L1/2�(X), (−Id+hL , s
m ) L1/2�(X)

〉
,

and the conclusion follows.

Note that we have the following:

Corollary 1. If the condition of theorem 2 is satisfied, the homogeneous solution
of equation 2.7 is unique.

Proof. Indeed, the result of theorem 2 is independent of the particular
stationary solution U that is chosen in the proof.

4.2 The Activity-Based Model. We now give a sufficient condition for
the stability of a solution to equation 2.8. We define the “maximal corrected”
connectivity matrix function Wmc = DSmW and the linear compact operator
km from F to F :

km(x)(r) =
∫

�

Wmc(r, r′) x(r′) dr′.

Theorem 3. A sufficient condition for the stability of a solution to equation 2.8
is that all the eigenvalues of the linear compact operator kL

m be of a magnitude less
than 1, where kL

m is defined by

kL
m(x)(r) =

∫
�

L−1/2Wmc(r, r′)L−1/2x(r′) dr′ ∀x ∈ F .

Proof. Let U be a stationary solution of equation 2.8 for a stationary external
current Iext(r). As in the proof of theorem 2, we introduce the new function
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X = V − U, where V is the unique solution of the same equation with initial
conditions V(0) = V0 ∈ F , an element of C(J ,F). We have

Xt(r, t) =−LX(r, t) + S
(∫

�

W(r, r′)V(r′, t) dr′ + Iext(r)
)

−S
(∫

�

W(r, r′)U(r′) dr′ + Iext(r)
)

.

Using a first-order Taylor expansion with an integral remainder, this equa-
tion can be rewritten as

Xt(r, t) =−LX(r, t) +
(∫ 1

0
DS

( ∫
�

W(r, r′)U(r′) dr′ + Iext(r)

+ζ

∫
�

W(r, r′)X(r′, t) dr′
)

dζ

)(∫
�

W(r, r′)X(r′, t) dr′
)

.

Consider now the functional 
(X) = 1
2‖X‖2

F . Its time derivative is

d
(X)
dt

= 〈 X, Xt 〉 .

We replace Xt(r, t)) by its value in this expression to obtain

d
(X)
dt

= −〈 X, LX 〉 + 〈
X, σm(X)km(X)

〉
,

where the nonlinear operator σm is defined by

σm(X)(r, t) =
∫ 1

0
DS

( ∫
�

W(r, r′)U(r) dr′

+ζ

∫
�

W(r, r′)X(r′, t) dr′
)

DS−1
m dζ,

a diagonal matrix whose diagonal elements are between 0 and 1. We rewrite
d
(X)

dt in a slightly different manner, introducing the operator kL
m:

d
(X)
dt

= − 〈
L1/2X, L1/2X

〉+ 〈
σm(X)L1/2X, kL

m(L1/2X)
〉
.

From the Cauchy-Schwarz inequality and the property of σm(X), we obtain

∣∣〈 σm(X)Y, kL
m(Y)

〉∣∣ ≤ ‖σm(X)Y‖F ‖kL
m(Y)‖F ≤ ‖Y‖F ‖kL

m(Y)‖F
Y = L1/2X.
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A sufficient condition for d
(X)
dt to be negative is therefore that ‖kL

m(Y)‖F <

‖Y‖F for all Y.

5 Numerical Experiments

In this section and the next, we investigate the question of effectively
(i.e., numerically) computing stationary solutions of equation 2.7, which
is equivalent to computing solutions of equation 3.2. Similar results are
obtained for equation 2.8.

In all of our numerical experiments, we assume the sigmoidal functions
Si , i = 1, . . . , n introduced in definition 1 to be of the form 2.1.

5.1 Algorithm. We now explain how to compute a fixed point V f of
equation 3.3 in which we drop for simplicity the upper index L and the
lower index ext:

V f = W · S(V f ) + I (5.1)

The method is iterative and based on Banach’s fixed-point theorem (Evans,
1998):

Theorem 4. Let X be Banach space and M : X → X a nonlinear mapping such
that

∀x, y ∈ X,
∥∥M(x) − M(y)

∥∥ ≤ q ‖x − y‖ , 0 < q < 1.

Such a mapping is said to be contracting. M has a unique fixed point x f and for
all x0 ∈ X and xp+1 = M(xp) then (xp) converges geometrically to x f .

Note that this method allows to computing the solution of equation 3.2
only when it admits a unique solution and f is contracting. However, it
could admit more than one solution (recall it always has a solution; see
theorem 1) or f could be noncontracting. Another method has to be found
in these cases.

In our case, X = F = L2
n(�), where � is an open-bounded set of R

n and
M = fv . According to lemmas 2 and 1, if DSm ‖W‖F < 1, fv is contracting.

Each element of the sequence Vp, p ≥ 0 is approximated by a piecewise
constant function Vp, h , where h is the step of the approximation, defined by
a finite number of points rh, j ∈ �, 1 ≤ j ≤ � 1

h �. In order to avoid difficulties
because Vp, h ∈ L2

n(�), hence defined almost everywhere, we assume that W
and I are smooth. It is not a restriction because every function of L2

n(�) can
be approximated by a smooth function. As the bump solution is smooth,
as soon as W, I are smooth, we can use the multidimensional gaussian
quadrature formula (Press, Flannery, Teukolsky, & Vetterling, 1988; Stoer
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& Bulirsch, 1972) with N points (in the examples below, usually N = 20)
on each axis. In order to interpolate the values of the bump from a finite
(and small) number of its values Vn(rh, j,Gauss), we use Nyström’s method
(Hazewinkel, 2001), as follows:

Vp(r) =
∑

j

g j Wp(r, rp, j,Gauss)S(Vp(rp, j,Gauss)) + I(r),

where the g j s are the weights of the gaussian quadrature method and the
points rp, j,Gauss are chosen according to the gauss quadrature formula. It is
to be noted that the choice of a particular quadrature formula can make a
huge difference in accuracy and computing time (see section A.2).

Having chosen the type of quadrature we solve with Banach’s theorem,

V f
h = Wh · S(V f

h ) + Ih, (5.2)

that is, we compute the fixed point at the level of approximation defined by
h.

The following theorem ensures that limh→0 V f
h = V f :

Theorem 5. Assume that limh→0 Wh = W in L2
n×n(� × �) then max1≤ j≤� 1

h �
|V h(rh, j ) − V f (rh, j )| = O(ah) h→ 0 with ah = ‖W − Wh‖F .

Proof. The proof is an adaptation of (Krasnosel’skii, Vainikko, Zabreiko, &
Stetsenko, 1972, theorem 19.5).

5.2 Examples of Bumps. We show four examples of the application of
the previous numerical method to the computation of bumps for various
values of n and q .

There are n populations (V = [V1, . . . , Vn]T , W ∈ L2
n×n(� × �)), some ex-

citatory and some inhibitory. � = [−1, 1]q . We characterize in section 6.2
how the shape of � influences that of the bumps. The connectivity matrix
is of the form

Wi j (r, r′) = αi j exp
(

−1
2

〈
r − r′, Ti j

(
r − r′)〉) , (5.3)

with Ti j ∈ Mq×q a q × q symmetric positive definite matrix. The weights
αi j , i, j = 1, . . . , n form an element α of Mn×n, and T = [ T11 T12

T21 T22
] is an ele-

ment of Mnq×nq . The weights α are chosen so that DSm‖W‖F < 1. The sign
of αi j , i = j , indicates whether population j excites or inhibits population
i . The bumps are computed using the algorithm described in the previous
section.
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Figure 3: Example of a two-population, two-dimensional bump with constant
external currents (see text).

Figure 4: Example of a two-population, two-dimensional bump with gaussian-
shaped external current (see text).

5.2.1 First Example: n = 2, q = 2, Constant Current. Figure 3 shows an
example of a bump for the following values of the parameters:

α =
[

0.2 −0.1

0.1 −0.2

]
I = [−0.3, 0]T T =




40 0 12 0

0 40 0 12

8 0 20 0

0 8 0 20


 .

There is one excitatory and one inhibitory population of neural masses.

5.2.2 Second Example: n = 2, q = 2, Nonconstant Current. Figure 4 shows
a different example where the external current I is still equal to 0 for its
second coordinate and is not constant but equal to its previous value, −0.3,
to which we have added a circularly symmetric 2D gaussian centered at
the point of coordinates (0.5, 0, 5) of the square � with standard deviation
0.18 and maximum value 0.2. It is interesting to see how the shape of the
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Figure 5: Example of a three-population, two-dimensional bump (see text).

previous bump is perturbed. The matrix α is the same as in the first example.
The matrix T is equal to

T =




5 0 1 0

0 5 0 1

16 0 40 0

0 16 0 40


 ,

corresponding to a spatially broader interaction for the first population and
narrower for the second.

5.2.3 Third Example: n = 3, q = 2, Constant Current. Figure 5 shows an
example of a bump for three neural populations—two excitatory and one
inhibitory—in two dimensions. We use the following values of the param-
eters:

α =




.442 1.12 −0.875

0 0.1870 −0.0850

0.128 0.703 −0.7750




T

I = [0, 0]T

T =




40 0 12 0 12 0

0 40 0 12 0 12

8 0 20 0 9 0

0 8 0 20 0 9

40 0 12 0 12 0

0 40 0 12 0 12




.
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Figure 6: Example of a two-population, three-dimensional bump; isosurfaces
are shown. Transparencies increase linearly from blue to red.

5.2.4 Fourth Example: n = 2, q = 3, Constant Current. We show an exam-
ple of a three-dimensional bump for two populations of neural masses (see
Figure 6). The parameters are

α =
[

0.2 −0.1

0.1 −0.2

]
I = [0, 0]T T =

[
40 Id3 12 Id3

8 Id3 20 Id3

]
,

where Id3 is the 3 × 3 identity matrix.

6 Sensitivity of the Bump to Variations of the Parameters

In this section, we characterize how the solutions of equation 3.2 vary with
the parameters that appear in the equation. These parameters are of two
types: first, we have a finite number of real parameters such as the external
currents, the weights in the connectivity matrix W, or the parameters of the
sigmoids, and, second, the shape of the domain �, a potentially infinite-
dimensional parameter.

We focus on the voltage-based model; the analysis in the activity-based
case is very similar. We start with a set of general considerations in the
finite-dimensional case, which we then apply to the various cases. We then
tackle the more difficult case of the dependency with respect to the shape
of �.
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As fv is a smooth function of the parameters (I, α, S, . . .), one can show (by
extending Banach’s theorem) that the fixed-point V f inherits the smooth-
ness of fv .

6.1 The Finite-Dimensional Parameters. We introduce the linear oper-
ator2 W · DS(V f ) : F → F such that

W · DS(V f ) · V(r) =
∫

�

W(r, r′)DS(V f (r′))V(r′) dr′ ∀V ∈ F .

We have the following:

Proposition 6. The derivative ∂λV f of the fixed point V f with respect to the
generic parameter λ satisfies the equation

(Id − W · DS(V f )) · ∂λV f = b(λ, V f ), (6.1)

where b(λ, V f ) = (∂λW) · S(V f ) + W · (∂λS(V f )) + ∂λ I .

Proof. Taking the derivative of both sides of equation 5.1 with respect to λ,
we have

∂λV f = W · DS(V f ) · ∂λV f + (∂λW) · S(V f ) + W · (∂λS(V f )) + ∂λI.

Hence, we obtain equation 6.1.

Note that ∂λS(V f ) is the partial derivative of the vector S with respect to
the scalar parameter λ evaluated at V = V f .

Because of the assumption DSm‖W‖F < 1, the linear operator J = Id −
W · DS(V f ) is invertible with

J−1 =
∞∑

p=0

(W · DS(V f ))p,

and the series is convergent.
∂λV f is thus obtained from the following formula:

∂λV f = J−1b(λ, V f ),

2W · DS(V f ) is the Frechet derivative of the operator fv at the point V f of F .
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the right-hand side being computed by{
x0 = b(λ, V f )

xp+1 = x0 + W · DS(V f ) · xp p ≥ 0
.

We now apply proposition 6 to the study of the sensitivity of the bump to
the variations of the parameters.

6.1.1 Sensitivity of the Bump to the Exterior Current. When λ = I1, we find:

∂I1 V f = J−1

[
1

0

]
≥
[

0

0

]
.

This inequality is to be understood component by component. It predicts
the influence of I1 on V f . For example, with the parameters α and T used
in Figure 3 but with an external current equal to 0, we obtain the bump
shown in Figure 7 (top) with the derivatives shown at the bottom of the
same figure. We also show in Figure 8 of V1 and V2 along the diagonal and
the x-axis for different values of I1 close to 0. The reader can verify that the
values increase with I1, as predicted.

6.1.2 Sensitivity of the Bump to the Weights α. For λ = αi j , one finds

J · ∂αi j V
f = ∂αi j W · DS(V f ).

We then have:

λ = a : We find

∂a V f (r) = J−1 ·
[

exp
(− 1

2 〈r − ·, T11(r − ·)〉) 0

0 0

]
· DS(V f )

= J−1 ·
[

exp
(
− 1

2 〈r − ·, T11(r − ·)〉S′
1

(
V f

1 (·)))
0

]
≥
[

0

0

]
.

The fixed point is an increasing function of the excitatory parameter a .

λ = b : We find

∂bV f (r) = J−1 ·
[

0 − exp
(− 1

2 〈r − ·, T12(r − ·)〉)
0 0

]
· DS(V f )

= J−1 ·
[

− exp
(− 1

2 〈r − ·, T12(r − ·)〉) S′
2(V f

2 (·))
0

]
≤
[

0

0

]
.
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Figure 7: A bump corresponding to the following parameters: α and T are the
same as in Figure 3, I = [0 0]T (top). Derivative of the bump with respect to the
first coordinate, I1, of the exterior current (bottom). We verify that it is positive
(see text).

The fixed point is a decreasing function of the inhibitory parameter b (see
Figure 9).

The other cases are similar.

6.1.3 Sensitivity of the Bump to the Thresholds. When λ = θi , i = 1, 2 we
have from definition 1 of S and with the notations of proposition 6,

b(λ, V f ) = −W · DS(V f ) · ei , i = 1, 2,
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Figure 8: Cross sections of V1 (left) and V2 (right) for I1 = −0.001 (long-dashed
line), I1 = 0 (continuous line) and I1 = 0.001 (dashed line). I2 = 0 in all three
cases. To increase the readibility of the results, we have applied an offset of 0.001
and 0.002 to the continuous and dashed curves on the right-hand side of the
figure, respectively.

Figure 9: Cross sections of V1 (left) and V2 (right) for b = −0.101 (long-dashed
line), b = −0.1 (continuous line), and b = −0.099 (dashed line). To increase the
readibility of the results, we have applied an offset of 0.001 and 0.002 to all
continuous and dashed curves, respectively.

where e1 = [1, 0]T , e2 = [0, 1]T . We show in Figure 10 some cross sections of
the bump V f obtained for the same values of the parameters as in Figure 3
and three values of the threshold vector.

6.1.4 Sensitivity of the Bump to the Slope of the Sigmoid. When λ = si , i =
1, 2, we have from definition 1 of S and with the notations of proposition 6,

b(λ, V f ) = W · DS(V f ) · s
(
V f − θ

)
,
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Figure 10: Cross sections of V1 (left) and V2 (right) for θ = −0.101[1, 1]T (long-
dashed line), θ = 0 (continuous line), and θ = 0.1[1, 1]T (dashed line). To in-
crease the readibility of the results, we have applied an offset of 0.001 and 0.002
to all continuous and dashed curves, respectively.

Figure 11: Plot of the derivative with respect to the slope of the sigmoids of the
the bump obtained with the same parameters α, I, and T as in Figure 3.

where the matrix s is given by

s =
[

1
s1

0

0 1
s2

]
.

Figure 11 shows the two coordinates ∂s V f
1 and ∂s V f

2 for s1 = s2 = s of the
derivative of the bump V f at s = 1 obtained for the same values of the other
parameters as in Figure 3, except the intensity which is equal to 0.

6.2 Sensitivity of the Bump to Variations of the Shape of the Domain �.
We expect the bump to be somewhat dependent on the shape of �. It would
nonetheless be desirable that this dependency would not be too strong for
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the modeling described in this letter to have some biological relevance.
Indeed, if the bumps are metaphors of persistent states, we expect them to
be relatively robust to the actual shape of the cortical part being modeled.
For example, if we take � to be a representation of the primary visual cortex
V1 whose shape varies from individual to individual, it would come as a
surprise if the shape of a bump induced by the same spatially constant
stimulus were drastically different.

Technically, in order to study the dependence of V f with respect to �,
we need to assume that � is smooth; its border ∂� is a smooth curve
(q = 2) or surface (q = 3) unlike the previous examples, where � was the
square [−1, 1]2. But a difficulty arises from the fact that the set of regular
domains is not a vector space—hence, the derivative of a function (the
bump) with respect to a domain has to be defined with some care. The
necessary background is found in section A.3.

We make explicit the fact that the connectivity function W has been
normalized to satisfy ‖W‖F = 1 by writing W(r, r′, �) where, with some
abuse of notation,

W(r, r′, �)=W(r, r′)/J (�) with J (�)=
√∫

�×�

‖W(r, r′)‖2
F dr dr′.

Theorem 6. Let us assume that � is a smooth, bounded domain of R
q . If W is

in W1,2
n×n(� × �), I ext is in W1,2

n (�) (see section A.1 for a definition) the material
derivative (see section A.3 for a definition) V f

m(r, �) of the bump V f satisfies the
following equation:

V f
m(r,�, X) =

∫
�

W(r, r ′, �)DS(V f (r ′,�))V f
m(r ′,�, X) d r ′ (6.2)

+
∫

�

W(r, r ′, �)S(V f (r ′,�))divX(r ′)d r ′ (6.3)

+
∫

�

D1W(r, r ′, �)X(r)S(V f (r ′,�))d r ′ (6.4)

+
∫

�

D2W(r, r ′, �)X(r ′)S(V f (r ′,�))d r ′ (6.5)

− 〈J ′(�), X〉
J (�)

(V f (r, �) − I ext(r))

+ DI ext(r) · X(r), (6.6)

where Di , i = 1, 2 indicates the derivative with respect to the ith variable and
〈J ′(�), X〉 is the Gâteaux derivative of J (�) with respect to the vector field X:

〈J ′(�), X〉 = lim
τ→0

J (�(τ )) − J (�)
τ

,
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where X is defined in the proof below. We have

〈J ′(�), X〉= 1
2J (�)

( ∫
�×∂�

‖W(r, r ′, �)‖2
F 〈X(r ′), N(r ′)〉 d r da(r ′)

+
∫

∂�×�

‖W(r, r ′, �)‖2
F 〈X(r ′), N(r ′)〉 da(r) d r ′

)
,

where da is the surface element on the smooth boundary ∂� of �, and N is its unit
inward normal vector.

Proof. The proof uses ideas that are developed in Delfour and Zolésio
(2001) and Sokolowski and Zolésio (1992; see also section A.3). We want to
compute

V f
m(r, �, X) = lim

τ→0

V f (r(τ ), �(τ )) − V f (r, �)
τ

from equation 3.2. As far as the computation of the derivative is concerned,
only small deformations are relevant, and we consider the first-order Taylor
expansion of the transformation T :

T(τ, r) = T(0, r) + τ
∂T
∂τ

(0, r) = r + τX(r).

We define


 ≡ 1
τ

(∫
�(τ )

W(r(τ ), r′, �(τ ))S(V f (r′,�(τ )))dr′

−
∫

�

W(r, r′, �)S(V f (r′,�)) dr′

+ Iext(r + τX(r )) − Iext(r)
)

.

In the first integral, we make the change of variable r′ → r′ + τX and obtain

1
τ

∫
�

W(r + τX(r), r′ + τX(r′), � + τX)

×S(V f (r′ + τX(r′),� + τX))|detJ τ (r′)|dr′.

We have

detJ τ (r′) = 1 + τdiv(X(r′)) + o(τ ).
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Hence, for τ sufficiently small detJ τ > 0. Moreover:

lim
τ→0

detJ τ = 1 lim
τ→0

detJ τ (r′) − 1
τ

= div(X(r′)),

and

W(r + τX(r), r′ + τX(r′), � + τX)

= W(r, r′) + τ D1W(r, r′)X(r) + τ D2W(r, r′)X(r′)

−τ
〈J ′(�), X〉

J (�)
W(r, r′, �) + o(τ ),

where Di , i = 1, 2 indicates the derivative with respect to the ith argument.
Thus, we have

τ
 =
∫

�

W(r, r′,�)(S(V f (r′ + τX(r′),� + τX))

− S(V f (r′,�)))detJ τ (r′)dr′

+
∫

�

W(r, r′,�)S(V f (r′,�))(detJτ (r′) − 1)dr′

+ τ

{∫
�

D1W(r, r′,�)X(r)S(V f (r′ + τX(r′),� + τX))detJτ (r′)dr′

+
∫

�

D2W(r, r′,�)X(r′)S(V f (r′ + τX(r′),� + τX))detJτ (r′)dr′

− 〈J ′(�), X〉
J (�)

∫
�

W(r, r′, �)S(V f (r′ + τX(r′),� + τX))detJτ (r′)dr′

+ DIext(r) · X(r)
}
.

Because

lim
τ→0

S(V f (r′ + τX(r′),� + τX)) − S(V f (r′,�))
τ

= DS(V f (r′,�))V f
m(r′,�, X),

and
∫
�

W(r, r′, �)S(V f (r′,�)) dr′ = V f (r, �) − Iext(r), we obtain equa-
tion 6.2. The value of 〈J ′(�), X〉 is obtained from corollary 2.
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Figure 12: The unit disk and its bump V f .

Equation 6.2 is of the same form as before:

(
J · V f

m

)
(r,�, X) =

∫
�

W(r, r′, �)S(V f (r′,�))divX(r′)dr′

+
∫

�

D1W(r, r′, �)X(r)S(V f (r′,�))dr′

+
∫

�

D2W(r, r′, �)X(r′)S(V f (r′,�))dr′

−〈J ′(�), X〉
J (�)

(V f (r, �) − Iext(r)).

This result tells us that the shape of the bump varies smoothly with respect
to the shape of the domain �.

6.2.1 Numerical Application for the Domain Derivatives. We show in
Figure 12 the bump V f for � equal to the unit disc D(0, 1) and in Figure 13
the one for � equal to the ellipse3 Ellipse(1.2, 1) of equation r2

1
a2 + r2

2 − 1 = 0.

3Ellipse(a , b) represents the ellipse lying along the first axis of coordinates with semi-
major axis a and semiminor axis b.
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Figure 13: Bump associated with the ellipse with major axis along the r1 coor-
dinate and the minor axis along the r2 coordinate. The ratio of the axes length
is a = 1.2 (see text).

The values of the weight parameters α are the same as in Figure 3 and
I = [0, 0]T . The matrix T is equal to

T =




40 0 10 0

0 10 0 12

12 0 40 0

0 40 0 40


 .

Note that because the diagonal elements are not equal for T11, T12, and T13,
W is not circularly symmetric, and so is the bump in Figure 12 despite the
fact that � is circularly symmetric.

Finally we show in Figure 14 the two coordinates of the shape (material)
derivative of the first bump in the direction of the field X corresponding to
the transformation

T(τ, r) = r + τ

[
(a − 1)r1

0

]
.

T(1) transforms the disc D(0, 1) into the ellipse Ellipse(a , 1), X(r) = [(a −
1)r1, 0]T .

Thus, divX = (a − 1) and, because of equation 5.3,

(
J · V f

m

)
(r,�, X) =

(
a − 1 − 〈J ′(�), X〉

J (�)

)
(V f − I)

+
∫

�

D1W(r, r′, �)(X(r) − X(r′))S(V f (r′,�))dr′,
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Figure 14: The shape derivative V f
m for a = 1.2.

and

〈J ′(�), X〉 =
∫
�×∂�

‖W(r, r′, �)‖2
F 〈X(r′), N(r′)〉 dr da(r′)

J (�)
.

As the gaussian quadrature formula holds for a rectangular domain, we
use polar coordinates to map the disk (or the ellipse) to a square. For our
numerical study, we can simplify these expressions (the matrixes Ti j are
symmetric):

[ ∫
�

D1W(r, r′, �)(X(r) − X(r′))S(V f (r′,�))dr′
]

i

=
∑

j

∫
�

(r − r′)T Ti j (X(r) − X(r′))Wi j (r, r′, �)Sj
(
V f

j (r′,�)
)
dr′

i = 1, . . . , n.

Thus, we can use a simple modification of the algorithm that computes
W · S(V) to obtain the previous expression.

J (�) and 〈J ′(�), X〉 are computed with a gauss quadrature formula. For
a circle in polar coordinates, N(r′) = r′.
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Let us be a bit more precise. In the case shown in Figure 12, we choose
I = 0. Using Banach’s theorem, we compute V f

Gauss for N = 30 and use
Nyström’s interpolation to compute V f

Nys for n = 100 (for example) points
on each axis.

Then, using V f
Gauss , we compute V f

m,Gauss for N points. But the equation
for V f

m reads

V f
m = W.DS(V f ).V f

m + 〈J ′(�), X〉.

Having computed a Nyström interpolation of n points for V f
m =

W.DS(V f ).V f
m + 〈J ′(�), X〉, we again use a Nyström interpolation with

the last equation to compute V f
m,Nystrom for n points on each axis.

We used this numerical method in every previous example related to the
computation of derivatives.

7 Conclusion and Perspectives

We have studied two classes (voltage and activity based) of neural con-
tinuum networks in the context of modeling macroscopic parts of the
cortex. In both cases, we have assumed an arbitrary number of interact-
ing neuron populations, either excitatory or inhibitory. These populations
are spatially related by nonsymmetric connectivity functions representing
cortico-cortical, local connections. External inputs are also present in our
models to represent nonlocal connections, for example, with other cortical
areas. The relationship between (average) membrane potential and activ-
ity is described by nondegenerate sigmoidal nonlinearities, that is, not by
Heaviside functions, which have often been considered instead in the liter-
ature because of their (apparent) simplicity.

The resulting nonlinear integro-differential equations are of the Ham-
merstein type (Hammerstein, 1930) and generalize those proposed by
Wilson and Cowan (1973).

Departing from most of the previous work in this area, we relax the usual
assumption that the domain of definition where we study these networks is
infinite, that is, equal to R or R

2, and we explicitly consider the biologically
much more relevant case of a bounded subset � of R

q , q = 1, 2, 3, obvi-
ously a better model of a piece of cortex. The importance of this has been
emphasized by Nunez (2005) for a number of years, and we fully agree with
him on this.

Using methods of functional analysis, we have studied the existence
and uniqueness of a stationary (i.e., time-independent) solution of these
equations in the case of a stationary input. These solutions are often referred
to as persistent states, or bumps, in the literature.

We have proved that under very mild assumptions on the connectivity
functions, such solutions always exist (this is due in part to the fact that we
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do not use Heaviside functions and mostly to the fact that we consider the
cortex as a bounded set).

We have provided sufficient conditions on the connectivity functions for
the solution to be absolutely stable, that is, independent of the initial state
of the network. These conditions can be expressed in terms of the spectra
of some functional operators, which we prove to be compact, that arise
naturally from the equations describing the network activity.

We have also studied the sensitivity of the solutions to variations of such
parameters as the connectivity functions, the sigmoids, the external inputs,
and the shape of the domain of definition of the neural continuum networks.
This last analysis is more involved than the others because of the infinite-
dimensional nature of the shape parameter. An analysis of the bifurcations
of the solutions when the parameters vary over large ranges requires the
use of techniques of bifurcation analysis for infinite-dimensional systems
and is out of the scope of this letter.

We believe, and we hope by now to have convinced the reader, that the
functional analysis framework that we have used in this letter is the right
one to try to answer some of the mathematical questions raised by models
of connected networks of nonlinear neurons. We also believe that some
of these also begin to answer biological questions since these networks
models, despite the admitedly immense simplifications they are built from,
are nonetheless metaphors of real neural assemblies.

Appendix A: Notations and Background Material

A.1 Matrix Norms and Spaces of Functions. We note Mn×n the set of
n × n real matrixes. We consider the Frobenius norm on Mn×n,

‖M‖F =
√√√√ n∑

i, j=1

M2
i j ,

and consider the space L2
n×n(� × �) of the functions from � × � to Mn×n

whose Frobenius norm is in L2(� × �). If W ∈ L2
n×n(� × �), we note

‖W‖2
F = ∫

�×�
‖W(r, r′)‖2

F dr dr′. Note that this implies that each element
Wi j , i, j = 1, . . . , n in in L2(� × �). We note F the set L2

n(�) of square-
integrable mappings from � to R

n and ‖x‖F the corresponding norm. We
have the following:

Lemma 1. Given x ∈ L2
n(�) and W ∈ L2

n×n(� × �), we define y(r) =∫
� W(r, r ′)x(r ′) d r ′. This integral is well defined for almost all r , y is in L2

n(�),
and we have

‖y‖F ≤ ‖W‖F ‖x‖F .
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Proof. Since each Wi j is in L2(� × �), Wi j (r, .) is in L2(�) for almost all r,
thanks to Fubini’s theorem. So Wi j (r, .)xj (.) is integrable for almost all r from
what we deduce that y is well defined for almost all r. Next, we have

|yi (r)| ≤
∑

j

∣∣∣∣
∫

�

Wi j (r, r′) xj (r′) dr′
∣∣∣∣

and (Cauchy-Schwarz)

|yi (r)| ≤
∑

j

(∫
�

W2
i j (r, r′) dr′

)1/2

‖xj‖2,

from which it follows that (Cauchy-Schwarz again, discrete version):

|yi (r)| ≤

∑

j

‖xj‖22




1/2 
∑

j

∫
�

W2
i j (r, r′) dr′




1/2

= ‖x‖F

∑

j

∫
�

W2
i j (r, r′) dr′




1/2

,

from which it follows that y is in L2
n(�) (thanks again to Fubini’s theorem)

and

‖y‖2
F ≤ ‖x‖2

F
∑
i, j

∫
�×�

W2
i j (r, r′) dr′ dr = ‖x‖2

F ‖W‖2
F .

We also use the following:

Lemma 2. For each V of F , S(V ) is in F ; and we have

‖S(V )‖F ≤ Sm
√

n|�|.

For all V 1 and V 2 in F we have

‖S(V 1) − S(V 2)‖F ≤ DSm‖V 1 − V 2‖F ,

where DSm is defined in definition 1.

Proof. We have ‖S(V)‖2
F = ∑n

i=1

∫
�

(Si (Vi (r)))2 dr ≤ S2
mn|�|, where |�| is

the Lebesgue measure of � (its area). Similarly, ‖S(V1) − S(V2)‖2
F = ∑n

i=1
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∫
�

(Si (V1
i (r)) − Si (V2

i (r)))2 dr ≤ (DSm)2 ∑n
i=1

∫
�

(V1
i (r) − V2

i (r))2 dr = (DSm)2

‖V1 − V2‖2
F .

In theorem 6, we use the Sobolev spaces W1,2
n (�) and W1,2

n×n(� × �).
W1,2

n (�) is the set of functions X : � → R
n such that each component

Xi , i = 1, . . . , n is in W1,2(�), the set of functions of L2(�) whose first-order
derivatives exist in the weak sense and are also in L2(�) (see Evans, 1998).
Similarly W1,2

n×n(� × �) is the set of functions X : � → Mn×n such that each
component Xi j , i, j = 1, . . . , n is in W1,2(�).

A.2 Choice of the Quadrature Method. We emphasize the importance
of the choice of a specific quadrature formula using the following example:∫ 1
−1 e−tdt = e − 1/e where we compare a 0th-order finite elements methods

with Gauss’s method (the parameters of the Gauss quadrature formula are
computed with a precision of 10−16 using Newton’s method):

Method Value

Exact 2.350 402 387 287 603 . . .

0th order (N = 1000) 2.351 945 . . .

Finite element
Gauss (N = 5) 2.350 402 386 46 . . .

The Gauss method is far more powerful and allows us to compute bumps
in 3D for an arbitrary number of populations.

A.3 Shape Derivatives. As it has already been pointed out, the compu-
tation of the variation of the bump with respect to the shape of the region �

is difficult since the set U of regular domains (regular open bounded sets)
of R

q does not have the structure of a vector space. Variations of a domain
must then be defined in some way. Let us consider a reference domain � ∈ U
and the set A of applications T : � → R

q , which are at least as regular as
homeomorphisms—one to one with T and T−1 one to one. In detail,

A = {
T one to one, T, T−1 ∈ W1,∞(�, R

q )
}
,

where the functional space W1,∞(�, R
q ) is the set of mappings such that

they and their first-order derivatives are in L∞(�, R
q ). In detail,

W1,∞(�, R
q ) = {

T : � → R
q such that T ∈ L∞(�, R

q ) and

∂i T ∈ L∞(�, R
q ), i = 1, · · · , q

}
Given a shape function F : U → R

q , for T ∈ A, let us define F̂ (T) =
F (T(�)). The key point is that since W1,∞(�, R

q ) is a Banach space, we can
define the notion of a derivative with respect to the domain � as:
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Definition 4. F is Gâteaux differentiable with respect to � if and only if F̂ is
Gâteaux differentiable with respect to T.

In order to compute Gâteaux derivatives with respect to T , we introduce
a family of deformations (T(τ ))τ≥0 such that T(τ ) ∈ A for τ ≥ 0, T(0) = I d ,
and T(·) ∈ C1([0, A]; W1,∞(�, R

q )), A > 0. From a practical point of view,
there are many ways to construct such a family, the most famous one being
the Hadamard deformation (Hadamard, 1968), which goes as follows.

For a point r ∈ �, we note

r(τ ) = T(τ, r) with T(0, r) = r

�(τ ) = T(τ, �) with T(0,�) = �).

Let us now define the velocity vector field X corresponding to T(τ ) as

X(r) = ∂T
∂τ

(0, r) ∀r ∈ �.

From definition 4 follows:

Definition 5. The Gâteaux derivative of a shape function F (�) in the direction
of X, denoted 〈F ′(�), X〉, is equal to

〈F ′(�), X〉 = lim
τ→0

F (�(τ )) − F (�)
τ

.

We also introduce:

Definition 6. The material derivative of a function f (r, �), noted fm(r, �, X)
is defined by

fm(r, �, X) = lim
τ→0

V (r(τ ), �(τ )) − V (r, �)
τ

,

and

Definition 7. The shape derivative of a function f (r, �), noted fs(r, �, X) is
defined by

fs(r, �, X) = lim
τ→0

f (r, �(τ )) − f r, �)
τ

.

The following theorem whose proof can be found, in Delfour and Zolésio
(2001) and Sokolowski and Zolésio (1992) relates the Gâteaux derivative
and the shape derivative:
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Theorem 7. The Gâteaux derivative of the functional F (�) = ∫
� f (r,�) d r in

the direction of X is given by

〈F ′(�), X〉 =
∫

�

fs(r, �, X) d r −
∫

∂�

f (r, �)
〈

X(r), N(r)
〉

da(r),

where N is the unit inward normal to ∂� and da its area element.

The following corollary is used in the proof of theorem 6:

Corollary 2. The Gâteaux derivative of the functional F (�) = ∫
� f (r) d r in the

direction of X is given by

〈F ′(�), X〉 = −
∫

∂�

f (r)
〈

X(r), N(r)
〉

da(r),

where N is the unit inward normal to ∂� and da its area element.
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Hadamard, J. (1968). Mémoire sur un problème d’analyse relatif à l’équilibre des
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