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Local/Global Analysis of the Stationary Solutions of Some Neural Field
Equations∗
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Abstract. Neural or cortical fields are continuous assemblies of mesoscopic models, also called neural masses, of
neural populations that are fundamental in the modeling of macroscopic parts of the brain. Neural
fields are described by nonlinear integro-differential equations. The solutions of these equations
represent the state of activity of these populations when submitted to inputs from neighboring brain
areas. Understanding the properties of these solutions is essential to advancing our understanding
of the brain. In this paper we study the dependency of the stationary solutions of the neural
fields equations with respect to the stiffness of the nonlinearity and the contrast of the external
inputs. This is done by using degree theory and bifurcation theory in the context of functional, in
particular, infinite dimensional, spaces. The joint use of these two theories allows us to make new
detailed predictions about the global and local behaviors of the solutions. We also provide a generic
finite dimensional approximation of these equations which allows us to study in great detail two
models. The first model is a neural mass model of a cortical hypercolumn of orientation sensitive
neurons, the ring model [O. Shriki, D. Hansel, and H. Sompolinsky, Neural Comput., 15 (2003),
pp. 1809–1841]. The second model is a general neural field model where the spatial connectivity is
described by heterogeneous Gaussian-like functions.
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1. Introduction. Neural or cortical fields are continuous assemblies of mesoscopic mod-
els, also called neural masses, of neural populations that are essential in the modeling of
macroscopic parts of the brain.

They were first studied by Wilson and Cowan [52] and Amari [2] and play an important
role in the design of the models of the visual cortex such as those proposed by Bressloff [12].
Neural fields describe the mean activity of neural populations by nonlinear integro-differential
equations. The solutions of these equations represent the state of activity of these populations
either in isolation (one talks about intrinsic activity) or when submitted to inputs from neigh-
boring brain areas. Understanding the properties of these solutions is therefore important for
advancing our understanding of how the brain encodes and processes its internal and external
inputs.
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Among these solutions, the persistent states (or stationary solutions) are important for at
least two reasons. First, in the case of autonomous systems, looking for persistent states helps
us to understand the dynamics because they are an easy way to divide the phase space into
smaller components. If one makes the further assumption that the connectivity function (to be
defined below) is symmetric (see the review in [20]), the dynamics is described by heteroclinic
orbits connecting the stationary solutions. Second, they are thought to be good models of the
memory holding tasks on the time scale of the second, as demonstrated by experimentalists
on primates [15, 27, 42].

There are four major ingredients that occur in the mathematical description of these
equations. The first is the domain Ω of integration (typically a piece of cortex) which is of
dimension d and can be bounded or unbounded; the second is the type of the nonlinearity
(sigmoidal, Heaviside); the third is the type of the connectivity function that appears in the
integral (homogeneous, i.e., translation invariant, or heterogeneous); and the fourth is the
number p of neuronal populations that are modeled.

Working with an unbounded domain Ω is not biologically relevant and also raises some
mathematical difficulties. Our work is with a bounded Ω. Besides its biological relevance,
this hypothesis is crucial for our mathematical analysis: it implies that there is at least one
persistent state for any set of parameter values and provides bounds for these persistent states.
We discuss the numerical validity of this hypothesis in section 7.

The nonlinearity in the neural field equations is most of the time chosen to be a Heaviside
function which leads to several mathematical difficulties, one of them being the specification
of the correct functional space. We found it easier in [26] to use smooth nonlinear functions
instead to study the persistent states. Only a few papers use sigmoidal functions, e.g., [3, 51],
or an alpha function [40].1 Moreover, Pinto and Ermentrout have shown how to extend
results obtained with Heaviside functions to results holding for smooth sigmoids using singular
perturbation theory [44], while in [37, 22] fixed point theorems are used to prove results for
sigmoids. Let us also mention the fact that some perturbative results for smooth sigmoids have
been obtained in the case of weakly interacting pulses [9] and inhomogeneous traveling waves
[6, 36]. In this paper we make the assumption that the nonlinearity is a sigmoid function,
i.e., infinitely differentiable.

Regarding the connectivity function, we assume only that it, as well as some of its deriva-
tives, is square integrable; see section 2.1. Hence it can be heterogeneous, i.e., not translation
invariant as it is often assumed to be in the literature. Despite the fact that they are rarely
considered, networks with heterogeneous weights have been studied in previous publications
[34, 45, 6, 7, 36, 47]. Our work provides a firmer mathematical setting for and generalizes
these attempts.

Surprisingly, there are few papers dealing with the persistent states. Their authors use
two main methods: Turing patterns (or bifurcation theory) and reduction to ODEs and PDEs.

The first method is used in almost every paper, e.g., [3, 17, 5, 51], very often in the case
of a translation invariant connectivity function (hence a convolution kernel), and leads to
the description of a large number of solutions and behaviors thereof, such as traveling waves,
breathers, persistent states, that depend on special relations between the spatial frequency k

1e−1/v2

H(v); H is the Heaviside function.
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956 ROMAIN VELTZ AND OLIVIER FAUGERAS

and the temporal frequency, ω. We generalize this approach as follows: we do not worry about
the spatial structure of the cortical states (i.e., the solutions, indexed by the spatial frequency
k in these previous studies) but think instead of a cortical state as a point in a (functional)
vector space. We can then elegantly and economically study how this point trajectory varies
(bifurcates) when the relevant parameters in the neural field equations vary. By doing so
we are able to harvest many more results that do not depend upon the translation invariant
assumption but of course also hold in this case.

The second method is to reduce the search for the persistent states to the problem of
finding homoclinic orbits for some ODEs [39] when Ω = R and p = 1, or of finding homoclinic
orbits for some PDEs [40] if Ω = R

2. The obvious advantage of these approaches is that
one can use finite dimensional tools such as those described in [38, 28] or PDE methods such
as those described, for example, in [32], for the bifurcation analysis. When successful, these
approaches allow us to compute the persistent states independently of their stability and to
compute their number as a function of the strength of the connections.

In a previous paper [26], we started the analysis of the neural fields equations defined over
a finite part of the cortex from two different viewpoints, theoretical and numerical. We proved
some results concerning the dynamics and gave a method to efficiently compute the persistent
state (or stationary solution) under the assumption that it was unique.

In the same article, we unsurprisingly found that the dynamics was “boring” (every initial
condition converged to a single persistent state) if the stiffness of the nonlinearity was small.
For example, the system could not exhibit oscillatory behaviors. More importantly we did
not produce a method for computing more than one, or even all, of the persistent states when
the system featured several such states.

In this paper we relax the hypothesis leading to the uniqueness of the persistent state
and try to understand the structure of the set, denoted B, of stationary solutions as the
parameters2 vary over large ranges of values, thereby departing from a purely local analysis.
The local structure of the set B is described using bifurcation theory (see [41, 32, 30]), whereas
degree theory helps us to understand its global structure. This latter theory can predict the
existence of stationary solutions that cannot be obtained using only bifurcation theory. In
order to numerically compute these persistent states, we use a multiparameter continuation
scheme that allows us to compute nonconnected branches3 of persistent states that would
otherwise be unattainable.

In order to perform our numerical experiments, we consider a very general method for
approximating the connectivity kernels, the Pincherle–Goursat kernels method [50], which
allows us to exactly reduce the dynamics to a system of ODEs whose dimension is directly
related to the level of approximation and can be arbitrarily large if needed. Hence our choice
to use infinite dimensional techniques on the integral equation is guided by the fact that it
offers a simple, albeit abstract, conceptual framework in which the behaviors of interest to us
can be described in a clean and dimension-independent manner. When it comes to numerical
experiments we use the system of ODEs provided by the Pincherle–Goursat kernels.

2We use the stiffness of the nonlinearity and the contrast of the external inputs, but our analysis also applies
to other parameters.

3A branch is a one-dimensional set of stationary solutions obtained by varying one parameter.
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The paper is organized as follows. In section 2 we introduce the functional analysis frame-
work that allows us to study the neural field equations as a Cauchy problem in a functional
space and to derive a number of useful properties of the (stationary) solutions of these equa-
tions. In section 3 we combine the results of the previous section with a bifurcation study
in order to obtain more information about the set B of solutions. A numerical scheme is
proposed to compute the structure of this set. In section 4 we show how to reduce the neural
field equations to a set of ODEs with an arbitrary precision through the use of the Pincherle–
Goursat kernels. In section 5 we study in detail a neural mass model that exactly reduces to
a finite set of ODEs, the ring model. In section 6, we compute the stationary solutions for
a model featuring two populations of neurons on a two-dimensional cortex sheet connected
by heterogeneous Gaussian-like functions: this allows us to provide salient examples of the
predictions obtained in sections 2 and 3. In section 7 we discuss the biological and numerical
validity of two of our main hypotheses, the fact that the cortex has a finite size and the use
of a smooth sigmoid instead of a Heaviside function. We conclude in section 8.

2. General framework. We consider the following formal neural field equation defined
over a bounded piece of cortex and/or feature space Ω ⊂ R

d. We wish to encompass in the
same formalism the geometry of the cortex, seen as a bounded piece of Rd, d = 1, 2, 3, and
the geometry of such feature spaces as edge or motion orientations (directions) which are
represented by a value between 0 and π (2π), or a scale which is represented by a positive
number, e.g., the spatial frequency. In section 5 we analyze in detail an example where the
focus is on edge directions, while in section 6 we analyze another example in which the focus
is on the two-dimensional geometry of the cortex.

(2.1)

{
V̇(r, t) = −L ·V(r, t) + [J(t) · S(λ(V(t) − θ))] (r) + Iext(r, t), t > 0,
V(·, 0) = V0(·).

This equation is an initial value problem that describes the time variation of the p-dimensional
vector function V defined on Ω, starting from the initial condition V0, a function defined on
Ω. At each time t ≥ 0 V belongs to some functional space, in effect a Hilbert space F , that
we describe in the next section. We now discuss the various quantities that appear in (2.1).

J(t) is a linear operator from F to itself defined by

(2.2) [J(t) ·V(t)](r) =

∫
Ω
J(r, r′, t)V(r′, t) dr′,

where J(r, r′, t) is a p × p matrix that describes the “strength” of the connections. We also
describe in the next section the functional space to which J(t) belongs and the conditions it
must satisfy in order for (2.1) to be well defined.

The external current input, Iext(·, t), is in F for all t ≥ 0.
The function S : Rp → R

p is defined by S(x) = [S(x1), . . . , S(xp)]
T , where S : R → (0, 1)

is the normalized sigmoid function of the equation

(2.3) S(z) =
1

1 + e−z
.

It is infinitely differentiable on R
p, and all its derivatives S(q)(x), q = 1, 2, . . . , are bounded.

For all integers q ≥ 1 we denote S(q)(x) the p×p diagonal matrix diag(S(q)(x1), . . . , S
(q)(xp)).
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Because of the form of the function S, the qth order derivative of S at x ∈ R
p is the multilinear

function defined by

(2.4) DqS(x) · (y1, . . . , yq) = S(q)(x) · (y1 · · · yq), yi ∈ R
p, i = 1, . . . , q,

where y1 · · · yq is the component pointwise product of the q vectors y1, . . . , yq of Rp, i.e., the
vector of Rp whose kth coordinate, k = 1, . . . , p, is equal to the product of the q kth coordinates
of each vector yi, i = 1, . . . , q.

λ is the p × p diagonal matrix diag(λ1, . . . , λp), λi ≥ 0, i = 1, . . . , p, that determines the
slope of each of the p sigmoids at the origin. We denote λm the maximum value of the λis.

θ is a p-dimensional vector that determines the threshold of each of the p sigmoids, i.e., the
value of the membrane potential corresponding to 50% of the maximal activity.

The diagonal p × p matrix L is equal to diag( 1
τ1
, . . . , 1

τp
), where the positive numbers τi,

i = 1, . . . , p, determine the exponential decrease in dynamics of each neural population.

As recalled in the introduction and detailed in [24, 25], this equation corresponds to a
mesoscopic description of the population of neurons which is called voltage-based by Ermen-
trout [20]. V in (2.1) therefore has the biological interpretation of an average membrane
potential of p populations of neurons. As pointed out by the same authors, there is also an
activity-based mesoscopic description which leads to the following initial value problem:

(2.5)

{
Ȧ(r, t) = −La ·A(r, t) + S (λ ([J(t) ·A] (r, t) + Iext(r, t))) , t > 0,
A(·, 0) = A0(·).

La �= L (see [20]) because they do not have the same biologiocal meaning: One is related
to the synaptic time constant and the other to the cell membrane time constant. We let
La = diag(α1, . . . , αp).

The two problems (2.1) and (2.5) are closely related. In particular, there is a one-to-one
correspondence between their equilibria, as recalled below for the ring model of section 5,
which is an activity-based model.

2.1. Choice of the appropriate functional space. The problem at hand is to find an
appropriate mathematical setting, i.e., to choose the functional space F , for the neural field
equations based on the following three criteria: (1) problems (2.1) and (2.5) should be well-
posed, (2) its biological relevance, and (3) its ability to allow numerical computations.

A Hilbert space is appealing because of its metric structure induced by its inner product.
Hence, a natural choice arising from the definition of the linear operator J would be the space
L2(Ω,Rp). But this space allows the average membrane potential to be singular, which is
biologically excluded. For example, the function r → |r|−1/2 ∈ L2(Ω,Rp) if d ≥ 0. It would be
desirable that this potential be bounded on the cortex. A way to achieve this is to allow for
more spatial regularity of the membrane potential: it is reasonable, e.g., from optical imaging
measurements, to choose r → V(r) as being differentiable almost everywhere.

For technical reasons that will become clear later we choose the Sobolev space

F = Wm,2(Ω,Rp), m ∈ N,
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with the inner product

(2.6) 〈X1,X2〉F =

m∑
|α|=0

〈DαX1,D
αX2〉L2(Ω,Rp) ∀X1, X2 ∈ F ,

where, as usual, the multi-index α is a sequence α = (α1, . . . , αd) of positive integers, |α| =∑d
i=1 αi, and the symbol Dα represents a partial derivative,

Dαϕ =
∂α1+···+αd

∂rα1
1 · · · ∂rα2

d

ϕ,

where ϕ : Ω → R and r = (r1, . . . , rd).

Note that F = Wm,2(Ω)× · · · ×Wm,2(Ω)︸ ︷︷ ︸
p

. Later we use the notation G for Wm,2(Ω);

i.e., F = Gp.

2.1.1. Choosing the value of m. The value of the integer m determines the regularity of
the functions V that represent the cortical states as well as that of the connectivity function J.
It turns out that, depending upon the relative values of m and the dimension d = 1, 2, 3 of the
space where we represent the cortical patch Ω and/or the feature space, F is a (commutative)
Banach algebra for the pointwise multiplication. This is important when using bifurcation
theory because we need to use Taylor expansions of the right-hand side of (2.1).

Being a Banach algebra property requires some regularity of Ω, i.e., of its boundary ∂Ω.
Because in the numerical experiments of section 6 we work with the open square Ω = [−1, 1]2,
we will assume the weakest regularity, the so-called cone property; see [1, Chapter IV] for
a definition. In practice one can safely assume that ∂Ω is C1. Roughly speaking, it means
that this boundary is a C1-manifold of dimension d − 1 of Rd. The exact definition, called
the uniform C1-regularity, can again be found in [1, Chapter IV]. It implies some weaker
regularity assumptions, such as the cone property.

Under this assumption on Ω we can adapt the theorem in [1, Chapter V, Theorem 5.24]
to obtain the following result.

Corollary 2.1. If the relation 2m > d holds, then F is a commutative Banach algebra with
respect to component pointwise multiplication; i.e., for all U and V elements of F their
component pointwise product UV is in F and there exists a positive constant K∗ such that

‖UV‖F ≤ K∗ ‖U‖F ‖V‖F ∀U, V ∈ F ,

where UV = (U1V1, . . . ,UpVp).

Let us explore some consequences of this proposition on our possible choices for the value
of m. These choices are guided by the idea of constraining the functional space F as little as
possible, given the fact that Wm,2 ⊂ Wn,2 for all integers 0 ≤ n < m.

d = 1: The relation 2m > 1 implies m ≥ 1 and we choose m = 1.
d = 2, 3: The relation 2m > d implies m ≥ 2 and we choose m = 2.

Similar results hold for higher values of the dimension d, but these cover the cases discussed
in this article.
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We summarize all of this in the following proposition.

Proposition 2.2 (choice of F). If Ω is the cone property, in particular, if it is uniformly
C1-regular, then we have F = W1,2(Ω,Rp) for d = 1 and F = W2,2(Ω,Rp) for d = 2, 3.
In all three cases, F is a commutative Banach algebra with respect to component pointwise
multiplication.

2.1.2. The choice of J. We assume that J(·, ·, t) ∈ Wm,2(Ω× Ω,Rp×p) for all t > 0.

As a consequence, the Frobenius F-norm of the linear operator W(t), denoted ‖J(t)‖F ,
is well defined:

‖J(t)‖2F =

m∑
|α|, |α′|=0

∫
Ω×Ω

∥∥∥DαDα′
J(r, r′, t)

∥∥∥2
F
dr dr′,

where it is understood that the partial derivative operator Dα (respectively, Dα′
) acts on the

variable r (respectively, r′) and ‖J(r, r′, t)‖F is the Frobenius norm of the matrix J(r, r′, t),

∥∥J(r, r′, t)∥∥2
F
=
∑
i,j

Jij(r, r
′, t)2.

This hypothesis also ensures the existence of the operator J as a linear operator from F
to F .

Proposition 2.3. Assume that J(·, ·, t) ∈ Wm,2(Ω × Ω,Rp×p) for all t > 0. Then (2.2)
defines a linear operator from F to F .

Proof. See Appendix A.

Since S is an R
p-valued bounded function on Ω and such functions are in L2(Ω), the right-

hand side of (2.1) is an element of F . Similarly, because S is also infinitely differentiable and
all its derivatives are bounded, the right-hand side of (2.5) is an element of F .

Finally, we denote ‖|J(t)|‖ the operator norm of J(t), i.e.,

sup
‖V‖F≤1

‖J(t) ·V‖F
‖V‖F

.

It is known (see, e.g., [35]) that

‖|J(t)|‖ ≤ ‖J(t)‖F .

Remark 1. Note that the relation 2m > d and our regularity assumption on Ω imply,
through the so-called Sobolev imbedding theorem [1, Chapter V, Lemma 5.15], that

G → C0
B(Ω),

where C0
B(Ω) is the set of continuous bounded functions on Ω. The consequence is that the

state vectors V and the connectivity matrix J are essentially bounded, which has certainly the
right biological flavor.
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2.2. The Cauchy problem. In this section we prove that (2.1) is well-posed, and we
provide some properties of its solutions.

We rewrite it as a Cauchy problem, i.e., as an ordinary differential equation on the func-
tional space F . This turns out to be convenient for the upcoming computations.

(2.7)

{
dV
dt = −L ·V +R(t,V), t > 0,
V(0) = V0 ∈ F .

The nonlinear operator R is defined by

(2.8) R(t,V) = J(t) · S(λ(V − θ)) + Iext(t).

Proposition 2.3 shows that R(t, ·) : F → F for all t > 0. We have the following properties.

Lemma 2.4. R satisfies the following properties:

• For all integers q ≥ 0, R(t, ·) ∈ Cq(F ,F) and DqR(t,V0) = λqJ(t)S(q)(λ(V0 − θ))
for all V0 in F .

• ‖R(t,U1) − R(t,U2)‖F ≤ λm ‖J(t)‖F ‖U1 − U2‖F for all t > 0 and for all U1,U2

in F .
• R(t, ·) is a compact operator on F for all t > 0.

Proof. It is easy to see from the definition (2.8) ofR that, if it exists, DqR(t,V0)[U1, . . . ,Uq]
= λqJ(t) · (S(q)(λ(V0 − θ)) · (U1 · · ·Uq)

)
. The notation U1 · · ·Uq is the same as in the def-

inition of DqS in (2.4), i.e., the component pointwise product of the q functions U1, . . . ,Uq

of F .

The q-multilinear operator DqR(t,V0) is well defined because, according to Corollary 2.1,
U1 · · ·Uq is in F . The first property follows immediately.

It remains to show that the q-multilinear operator DqR(t,V0) is continuous. We apply
Corollary 2.1 once more to show that

‖DqR(t,V0) · (U1 · · ·Uq)‖F ≤
∥∥∥λqJ(t)S(q)(λ(V0 − θ))

∥∥∥
F
‖U1 · · ·Uq‖F ≤ K

∏
i

‖Ui‖F

for some positive constant K; that is, DqR is continuous and R(t, ·) ∈ Cq(F ,F).

The second property is proved in [26].

For all α, |α| ≤ m U → ∂αJ · U are compact operators on L2(Ω,Rp) because they are
Hilbert–Schmidt operators (see [53, Chapter X.2]). Hence for any bounded Vn sequence in F
and hence in L2(Ω,Rp), there exists a subsequence V′

n such that DαJ(t) · S(λ(V′
n − θ)) are

convergent in L2(Ω,Rp) for |α| ≤ m. Then R(t,V′
n) is convergent in F because of (2.6). We

have proved that R(t, ·) is a compact operator on F .

Closely following [24], we have the following proposition.

Proposition 2.5. If the following two hypotheses are satisfied:

1. the connectivity function J is in C(R+;Wm,2(Ω× Ω,Rp×p) for the values of m given
in Proposition 2.2, and bounded, ‖J(t)‖F ≤ J , t ≥ 0,

2. the external current Iext is in C(R+;F),

then for any function V0 in F there is a unique solution V, defined on R
+ and continuously

differentiable, of the initial value problem (2.1).
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This solution depends upon 3p parameters, the slopes λ, the thresholds θ, and the diagonal
matrix L.

Even if we have made progress in the formulation of the neural field equations, there still
remains the unsatisfactory possibility that the membrane potential becomes unbounded as
t → ∞. However, this is not the case, as shown in the following proposition.

Proposition 2.6. If the external current is bounded in time ‖Iext‖F ≤ Iext for all t ≥ 0,
then the solution of (2.7) is bounded for each initial condition V0 ∈ F .

Proof. Let us define f : R×F → R
+ as

f(t,V)
def
= 〈−L ·V + J(t) · S(λ(V − θ)) + Iext(t),V〉F =

1

2

d‖V‖2F
d t

.

We note that τmax = maxi=1,...,p τi and notice that

f(t,V) ≤ − 1

τmax
‖V‖2F + (J + Iext)‖V‖F .

Thus, if ‖V‖F ≥ 2τmax(J + Iext)
def
= R, then f(t,V) ≤ −2τmax(J + Iext)

2 def
= −δ < 0.

Let us show that the open ball of F of center 0 and radius R, BR is stable under the
dynamics of (2.1). We know that V(t) is defined for all t ≥ 0 and that f < 0 on ∂BR, the
boundary of BR. We consider three cases for the initial condition V0.

If V0 ∈ BR and τ = sup
{
t | ∀s ∈ [0, t], V(s) ∈ BR

}
and we suppose that τ ∈ R, then

V(τ) is defined and belongs to BR, the closure of BR, because BR is closed, in effect, to ∂BR.
We also have d

dt‖V‖2F |t=τ = f(τ,V(τ)) ≤ −δ < 0 because V(τ) ∈ ∂BR. Thus we deduce that
for ε > 0 and small enough, V(τ + ε) ∈ BR, which contradicts the definition of τ . Thus τ /∈ R

and BR is stable.
Because f < 0 on ∂BR, V0 ∈ ∂BR implies that for all t > 0, V(t) ∈ BR.
Finally, we consider the case V0 ∈ �BR. Suppose that for all t > 0, V(t) /∈ B̄R; then

for all t > 0, d
dt‖V‖2F ≤ −2δ. Thus ‖V(t)‖F is monotonically decreasing and reaches the

value of R in finite time when V(t) reaches ∂BR. This contradicts our assumption. Thus
∃τ > 0 | V(τ) ∈ BR.

Corollary 2.7. If V0 /∈ BR and T = inf {t > 0 | V(t) /∈ BR}, then

T ≤ ‖V0‖2F −R2

2δ
.

This proposition shows that BR is an attracting set and that it suffices to study the
dynamics within this set to have the long time behavior of the solutions of the neural fields
equations.

This attracting set contains the stationary solutions of (2.1), and we devote the next
section to their study. We quote a result from [26] concerning their stability.

Proposition 2.8. If the condition
λmρ(Js) < 1

holds, then every stationary solution of (2.1) is globally asymptotically stable. λm = maxλi,
Js is the symmetric part (J+J∗)/2 of the operator J, and ρ(Js) its spectral radius. We define
λL to be ρ(Js)

−1.
Similar results hold for the activity-based model (2.5).
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2.3. Properties of the set of persistent states. We look at the equilibrium states, noted
Vf

λ, of (2.1), when Iext and J do not depend upon the time. Our goal is to estimate their
number and, if possible, to compute them numerically, for a given set of parameters.

It is quite demanding to do it at a given point in the parameter space except in some
very special cases.4 We note that when λ = 0 (or J = 0), the stationary equation is trivially
solved. Hence, we can think of deforming this trivial solution to a solution when λ �= 0,
J �= 0. This raises a number of questions. Does such a “manifold” of solutions exist; i.e., can
we link the trivial solution to a solution for any given set of parameters? If yes, are there
any other solutions? How do these “manifolds” look globally? These questions concern global
properties of the set of solutions (such as existence of branches, existence of intersection
points, and connectedness) and are difficult to answer. We provide some partial answers in
the remainder of the article.

Before going deeper in the analysis, we need to simplify the parameter space. The equi-
libria, also called bumps, or persistent states, are stationary solutions (independent of time)
of

0 = −L ·Vf
λ + J · S(λ(Vf

λ − θ)) + Iext.

We redefine J as L−1J, V as V − θ, and Iext as L
−1 · Iext − θ and restrict our study to

(2.9) 0 = −Vf
λ + J · S(λVf

λ) + Iext.

Still, (2.9) contains many parameters such as those describing J and Iext, or the slopes λ.
Which parameters should we choose for the continuation method—λ or J? We decide to fix
J and control λ for two reasons:

• The stationary solutions are bounded for λ ∈ R
p
+ (see Proposition 2.9.1), which is not

the case when ‖J‖ → ∞. This proves to be useful numerically.
• Previous studies usually use a Heaviside nonlinearity which is formally equivalent

to our nonlinearity when λ“=”∞; varying λ can thus bridge the gap with previous
approaches.

As a matter of fact, the techniques we are about to expose are applicable to any set of
parameters with minor modifications. Hence, we now focus on the influence of the slopes λ
on the solutions of (2.1). We make the assumption that they are all are equal to λ, λ = λIdp,
λ ≥ 0, where Idp is the p× p identity matrix. The equation becomes

(2.10) 0 = −Vf
λ + J · S(λVf

λ) + Iext
def
= −F (Vf

λ, λ).

It is clear that when λ = 0, the stationary equation is trivially solved by

Vf
0

def
= J · S(0) + Iext =

1

2
J · 1+ Iext,

where 1 is the p-dimensional vector with all coordinates equal to 1. Let Bλ be the set of
solutions of (2.10) for a given slope parameter λ:

Bλ = {V |F (V, λ) = 0} .
4When the nonlinearity J · S(λ(Vf

λ − θ)) is small compared to the linear part L ·Vf
λ, we know that there

exists a unique solution and how to compute it efficiently. This was proved in [26].
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We next provide some properties of the sets Bλ.

Proposition 2.9.

1. The persistent states satisfy the inequality

∥∥∥Vf
λ −Vf

0

∥∥∥
F
≤ ‖J‖F

√
p|Ω|S0

(
λ2B2

1

p|Ω|
)
, where B1

def
=
√

p|Ω| ‖J‖F + ‖Iext‖F ,

where S0 : R → R is the “shifted” sigmoid defined by S0(x) = S(x) − S(0) and the
constant B1 is defined in Proposition D.2 of Appendix D.1.

2. If the condition

(2.11) λ ‖J‖F < 1

is satisfied, then #Bλ = 1. We define λ∗ to be ‖J‖−1
F .

3. For all λ ∈ R
+, Bλ �= ∅.

4. If the number of solutions in Bλ is finite, then it must be odd.
5. Let 0 ≤ a < b be two reals, and consider the set B = ∪λ∈[a,b]Bλ×{λ}. Then B contains

a connected component C which intersects Ba × {a} and Bb × {b}.
Proof.

1. From Lemma D.1 in Appendix D.1 we have S0(λV
f
λi)

2 ≤ S0(λ
2(V f

λi)
2), i = 1, . . . , p.

Therefore,

p∑
i=1

S0(λV
f
λi)

2 ≤
p∑

i=1

S0(λ
2(V f

λi)
2) ≤ pS0

(
λ2

p

p∑
i=1

(V f
λi)

2

)
.

The second inequality comes from Jensen’s and the fact that S0(·) is concave in R
+.

It then follows, using again Jensen’s inequality and the fact that S0 is monotonously
increasing, that

∥∥∥S0(λV
f
λ)
∥∥∥2
L2(Ω,Rp)

≤ p|Ω|S0

(
λ2

p|Ω|
∥∥∥Vf

λ

∥∥∥2
L2(Ω,Rp)

)
≤ p|Ω|S0

(
λ2

p|Ω|
∥∥∥Vf

λ

∥∥∥2
F

)
.

Now

(2.12)
∥∥∥Vf

λ −Vf
0

∥∥∥2
F
=
∥∥∥J · S0(λV

f
λ)
∥∥∥2
F
=

m∑
|α|=0

∥∥∥DαJ · S0(λV
f
λ)
∥∥∥2
L2(Ω,Rp)

≤
∥∥∥S0(λV

f
λ)
∥∥∥2
L2(Ω,Rp)

m∑
|α|=0

‖DαJ‖L2(Ω,Rp) ≤
∥∥∥S0(λV

f
λ)
∥∥∥2
L2(Ω,Rp)

‖J‖2F .

The inequality then follows from Proposition D.2.
2. Use the Picard theorem. As shown in Figure 2, this imposes that λ∗ ≤ λL. Indeed,

as ρ(Js) ≤ ‖|Js‖| and ‖|Js|‖ = ‖|J|‖, and ‖|J|‖ ≤ ‖J‖F , we have λ∗ = ‖J‖−1
F ≤ λL =

ρ(Js)
−1.
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3. The first property is that it is nonempty: in [26] we proved that persistent states always
existed in L2(Ω,Rp) for all positive values of λ. However, our ambient functional space
is different since we require more space regularity. Let us consider a persistent state
Vf

λ ∈ L2(Ω,Rp) given by [26]. It satisfies Vf
λ = R(Vf

λ). But R : L2(Ω,Rp) → F
because of the assumptions on J(r, r′) and Iext. Hence any persistent state in L2(Ω,Rp)
in fact belongs to F .

4. Suppose that Bλ has an infinite number of solutions; then the proposition holds. If now
Bλ has a finite number of solutions, we can assume that these points are noncritical.
Then according to the Leray–Schauder degree theory sketched in Appendix B we have

degLS(F (V, λ), Br , 0) =
∑

Vf
λ∈Bλ

sign detLS(DV F (Vf
λ, λ), Br, 0)

=
∑

Vf
λ∈Bλ

sign detLS(Id− λJDS(λVf
λ)),

where r = 2B1 and B1 is defined in Proposition D.2 in Appendix D.1. We prove in
Corollary B.2 in Appendix B that the first term is equal to 1. Suppose now that Bλ

contains an even number of points, say, 2k, among which l correspond to a negative
sign and hence 2k − l to a positive sign. The sum that appears in the last term is
equal to 2k − 2l, and hence even. Hence Bλ must possess an odd number of points.

5. The proof uses the Leray–Schauder theorem; see Appendix B. We apply the theorem
to the function F : F × J → F , which is of the form Id + m, with m(·) = −R.
Because m is compact on F × J (see proof in [24]), Ba × {a} bounded, and there
exists an open bounded neighborhood Ua of Ba such that degLS(F (·, a),Ua, 0) �= 0
(Corollary B.2 in Appendix B), the conclusion follows since the connected component
cannot be unbounded, B being bounded.

This proposition answers some of the previous questions. For any positive value of λ, there
is always at least one persistent state, and we can find a way to connect the trivial solution
Vf

0 to a persistent state corresponding to an arbitrary value of the parameter λ. We return
to this connection later. All this is true if we choose, say, ‖J‖F , as a parameter instead of λ.

We will also see that not all the solutions in Bλ are in the connected component of (Vf
0 , 0) in

F × R+.

Regarding the connection between Vf
0 and V, Proposition 2.9 does not give us any indi-

cation of its regularity, but we have the following corollary.

Corollary 2.10. Let a and b be as in Proposition 2.9. For all ε > 0 there exists a finite
sequence (V1, λ1), . . . , (Vn, λn) of points of C such that ‖Vi−Vi+1‖F ≤ ε for i = 1, . . . , n−1
and λ1 = a, λn = b.

Proof. C is connected for any topology equivalent to the product topology of F × [a, b],
e.g., for the metric defined by d((V1, λ1), (V2, λ2)) = ‖V1 − V2‖F + |λ1 − λ2|. Since it is
connected for this metric, it is also well chained [14], and the conclusion follows.

In fact, except at points where the Jacobian of F is noninvertible (such points like B in
Figure 1 are potential bifurcation points), the implicit function theorem tells us that λ →
(Vf

λ, λ) is differentiable. Hence, in effect, Proposition 2.9.5 imposes strong constraints on the
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Figure 1. In the left-hand part of the figure, there is no connected curve of solutions in [a, b]: This is
forbidden by Proposition 2.9.5, which states that we must be in the situation shown in the right-hand part of
the figure, where the green curve connects Ba × {a} and Bb × {b}; see text.

set Bλ, as shown in Figure 1. The horizontal axis represents the parameter λ, and the vertical
axis the space F where the solutions of (2.10) live. The curves represent possible solutions
as functions of λ. The configurations in the left-hand part of the figure are forbidden by
Proposition 2.9.5, while those on the right-hand side are allowed, the green curve being an
example of a continuous curve s → (Vf

λ(s), λ(s)) from [0, 1] to F × [a, b].

Proposition 2.9.5 gives a very interesting general (nonlocal) property of the set of solutions.
But it is nonconstructive; for example, it does not tell us which branch to chose at point B in
Figure 1, and we need to compute all the branches to know the path to λ = b. Hopefully such
branching points as B are very rare and one sees only turning points rather than branching
points (such as the one at λ1 in Figure 2(Left)): any perturbation will indeed destroy such
branching points (see Figure 2(Right)). Hence, if one continues with the trivial solution
(obtained for λ = 0), one will typically find a curve like the green one in Figure 2(Right). This
may lead to the wrong conclusion that for λ big enough there is only one stationary solution
instead of three. The problem is to find a way to compute, if it exists, the second, red, curve,
which is not connected to the green curve and hence not attainable by λ-continuation.

An idea directly suggested by the above picture is to restore the branching points by
perturbation. Among all possible perturbations, we choose one of the simplest; i.e., we vary
the amplitude of the external input Iext. Hence we define the external current Iext to be εIext,
where the contrast ε satisfies 0 ≤ ε ≤ 1. This is suggested by experimentalists who usually
provide neural responses as functions of the contrast. Note that some nongeneric external
input may not break the branching points (see section 3.2).

The conclusion is that if we want one solution for λ �= 0, we use a λ-continuation of the
trivial solution, but if we want more than one (or the maximum number of) solutions for
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Figure 2. The white zone is the domain of existence of Vf . The grey zone is excluded thanks to Proposition
2.9.1. Left: Nongeneric situation; a transcritical bifurcation occurs at λ1. Right: Same as left with a small
perturbation (like a tiny change of the external input Iext); the transcritical bifurcation has opened up. λL is
defined in Proposition 2.8 and λ∗ in Proposition 2.9.

λ �= 0, then we perform a (λ, ε)-continuation of the trivial solution.
Remark 2. An interesting question is to predict how close to λL the smallest value of λ

where a “turning point” occurs can be.
However, when performing this (λ, ε)-continuation of the trivial solution, we may end up

with a lot of data. Hence, we need to have an idea of the structure of the set (Vf
λ,ε, λ, ε). The

idea is, again, to think of this set as a deformation of an easier-to-compute set of stationary
solutions. This is done in the next section.

Remark 3. It is highly possible that this (λ, ε)-continuation scheme still misses some solu-
tions. One possibility is to introduce a third parameter, but the scheme may become quickly
numerically untractable.

3. Exploring the set of persistent states. We exploit the fact that in the neural field
equation (2.10) the ratio between the external current Iext and J is not fixed a priori. Hence,
when studying the NFE, one would rather look at

(3.1) −V + J · S(λV) + εIext = 0,

where ε ≥ 0. The persistent states now depend upon the pair (λ, ε), i.e., Vf
λ,ε. The idea is to

infer the persistent states of (3.1) from those, Vλ,0, of

(3.2) −V+ J · S(λV) = 0.

We further simplify the problem by considering

(3.3) −V + J · S0(λV) + μJ · S(0) = 0,

where S0 is defined in Proposition 2.9. We recover (3.2) when μ = 1. The advantage is that
when μ = 0, we can say a great deal about the persistent states.
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3.1. A simpler case. This simpler case reduces to the study of the previous equation
when μ = 0:

(3.4) −V+ J · S0(λV) = 0.

In other words, we infer the persistent states of (3.1) from those, Vλ,ε=0,μ=0, of (3.4). This
case has been studied a lot by several authors [20, 16, 8] when a constant current Iext is
applied, which amounts to changing the threshold θ in S.

V = 0 is a trivial persistent state for (3.4). Remember that a necessary condition for the

equation F (V, λ) = 0 to bifurcate at the solution (Vf
λ, λ) is thatDV F (Vf

λ, λ) be noninvertible.
For technical reasons it is interesting to slightly modify the nonlinear term R in (2.7) by

subtracting from it its linear part as follows. We rewrite (3.4) as

(3.5) Lλ ·V +R(λ,V) = 0

with R(λ,V) = O(‖V‖2F ) and

(3.6) Lλ = −Id + λJDS0(0) = −Id +
λ

4
J.

The operator Lλ satisfies the following properties.
Proposition 3.1.
• The operator J is a compact linear operator on F .
• Lλ = −Id+λ

4J is a Fredholm operator of index 0 (useful for static bifurcation; see [30]).
• Lλ is a sectorial operator (useful for dynamical bifurcation; see [30]).

Proof. The first property was proved in Lemma 2.4.
Because J is a compact operator, the kernel of −Id + λ

4J is of finite dimension equal to
the codimension of its image; hence its index is 0.

Lλ is a sectorial operator because it is a bounded linear operator on a Banach space; see,
e.g., [31].

We can therefore state that the values of the parameter λ that determine the possible
bifurcation points are

(3.7) λn =
4

σn
, n = 1, 2, . . . ,

where σn is an eigenvalue of the compact operator J. We assume in what follows that λ1 ≤
λ2 ≤ · · · .

Additional properties have to be met in order to have a bifurcation point (see [41]), but
they are satisfied if every eigenvalue of J is simple. We will assume that the first k ≥ 1 (k is
arbitrary) eigenvalues are simple because this class of operators is dense in the set of compact
operators (see [41]). We denote by en (respectively, by e∗n) the eigenvector of J (respectively,
of the ajoint operator J∗) for the eigenvalue σn.

A simple adaptation of Lemma 2.4 shows that R is Cq for all integers q, and we can
consider (if it exists) the minimal integer q ≥ 2 such that

0 �= χ(n)
q ≡ 〈Gq(en, λn), e

∗
n〉F .
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According to Lemma 2.4,

Gq(en, λn) =
1

q!
DqR(λn,0)[en · · · en] = λq

n

q!
S
(q)
0 (0)J · (en · · · en).

By parity, S
(q)
0 (0)

def
= sq �= 0 if and only if q is odd. Hence, the parity of q, which is odd,

tells us that we have a pitchfork bifurcation at λn. In particular, the bifurcated branch is
given by

Vf
λ = x(λ)en + o(x).

Thus the bifurcation portrait is a set of branches Cn emanating at points (at least for
n ≤ k) (0, λn). Thanks to Proposition 3.1, we can apply the Lyapunov–Schmidt procedure
(see [30]) to get the following reduced equation on x ∈ R:

0 = (−1 + λσn/4)x+ g(x, λ) = (−1 + λσn/4)x+ χ(n)
q xq + o(xq).

Depending on the sign of χ
(n)
q , the pitchfork branch is oriented toward λ < λn (respectively,

λ > λn) if χ
(n)
q > 0 (respectively, χ

(n)
q < 0). Let us denote eqn the vector en · · · en︸ ︷︷ ︸

qtimes

. We have

χ(n)
q =

λq
nsq
q!

〈J · eqn, e∗n〉F =
λq
nsq
q!

〈eqn,J∗ · e∗n〉F =
λq−1
n sq
q!s1

〈eqn, e∗n〉F .

From a practical standpoint, the last inner product is difficult to compute since it requires
the computation of the eigenvectors of the adjoint operator J∗ of J for the inner product of
the Hilbert space F = Wm,2 which are in general different from those of the adjoint operator
J∗
2 of J for the inner product of the Hilbert space W0,2 ≡ L2. This computation is greatly

simplified by the following proposition.

Proposition 3.2. Let e∗L2 be an eigenvector of the adjoint operator J∗
L2 of J for the inner

product of the Hilbert space L2, associated to the eigenvalue λ (assumed to be simple). Let e∗F
be the corresponding eigenvector of the adjoint operator J∗

F of J for the inner product of the
Hilbert space F = Wm,2. Then it is possible to choose e∗F such that the following holds:

〈U, e∗F 〉F =
〈
U, e∗L2

〉
2

∀U ∈ F .

Proof. See Appendix E.

In effect, in order to obtain the sign of χ
(n)
q , we have only to compute the eigenvectors of

J∗
2 and to compute inner products in L2.

Thus, we have found local branches of stationary solutions and continue them globally in
order to obtain the global branches named Cn. An interesting question yet unsolved is whether
the branches Cn are connected. Some results exist that are similar to those of Rabinowitz (see
[46, 41]) but do not provide much insight into the general case (d > 1, p > 1 . . .). However,
they can be used to derive some properties of C1.

Proposition 3.3 (turning point property). If χ
(n)
q > 0, then ∃λT < λ1 such that for all λ ∈

(λT , λ1), (3.4) has at least three solutions and λT = min
{
λ / (Vf , λ) ∈ C1

}
.
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Proof. Let C1 be the connected component in B̄ where B = {(V, λ) | V �= 0, (V, λ)
satisfies (3.4)}, to which (0, λ1) belongs. Then (see [41]) C1 is unbounded in F × R+ or
contains a point (0, λn), n > 1. In either case, C1 exists until λ = λ2.

C̃ = C̄1 ∩ (F × [λ∗, λ2]) is closed and bounded (because every solution Vf
λ is bounded

in F). Let us show that C̃ is compact in F × [0, λ2]. Consider a sequence (Vn, sn) in C̃.
As sn is bounded, we can assume it is convergent. We also have Vn = J · S0(snVn). As
(V, λ) → J ·S0(λV) is a compact operator, there exists a subsequence (Vφ(n), sφ(n)) such that

J ·S0(sφ(n)Vφ(n)) is convergent; hence Vφ(n) is converging. We have proved that C̃ is compact.

Hence ΠR+(C̃) is a compact subset of R+. Then inf ΠR+(C̃) is a min written λT ∈ ΠR+(C̃).
As it is an inf, there exists a sequence sn associated to a Vn in C̃ such that sn → λT . But as
C̃ is compact, we can assume that Vn → VT . Then (VT , λT ) ∈ C is called a turning point.5

So we have proved that λT ≤ λ1. But in the case that q is odd with χ
(n)
q > 0, C1 exists

for λ < λ1 and λT < λ1.
Now, for all λ ∈ (λT , λ1), ∃(Vf

λ, λ) ∈ C1 \ {(0, λ)} because C1 intersects {0} × R+ only at
bifurcation points (0, λn) located “after” λ1. Then because of Proposition 2.9.4, there are at
least three solutions.

Remark 4. If the sigmoidal function had satisfied S(2)(0) �= 0, we would have seen trans-
critical bifurcations, and the previous proposition still holds in that case.

Remark 5. If we were able to prove that the branches do not intersect, the previous propo-
sition would apply to all branches Cn satisfying the required conditions.

Even if we do not deal with the dynamics, we can say a little using [30, 41, 38]. At
every bifurcation point, the center manifold at V = 0 (see [30]) is one-dimensional, while the
dimension of the unstable manifold increases as λ crosses values corresponding to transcritical
points. Hence, for large λ’s, we can have a large unstable manifold. Note that every value of λ
is biologically plausible because the locally (around V = 0) exponentially divergent dynamic
is bounded (see Proposition 2.6), which can make the “global” dynamics very intricate. In
effect, when λ grows to infinity, the sigmoid tends to a Heaviside function, which acts as a
threshold.

Remark 6. Note that it is easy to characterize breathers (see [43, 18]) in this framework. It
is sufficient to choose a connectivity function J with complex eigenvalues. For example, with
a model of two populations (p = 2), one excitatory and one inhibitory, such that

J(r, r′) =
[
G1(r, r

′) −G2(r, r
′)

G2(r, r
′) G1(r, r

′)

]
, Gi symmetric ≥ 0, [G1, G2] = 0,

then σ(J) = {g1,n ± ig2,n, gi,n ∈ σ(Gi)} and a Hopf bifurcation occurs at λH,n = 1
2S′(0)g1,n if

the eigenvalue is simple. Because R is C3, we can also compute its first Lyapunov coefficient
(see [30], [38, p. 107]) and find

l1 = −λ3
H,ns

2
2

4ω2
ns1

(
1−
√

g21,n + g22,n
s3s1
s22

)

with ωn =

√
g21,n+g22,n
2g1,n

, s2 = S(2)(0), and s3 = S(3)(0).

5Not in the sense of [38]; here it denotes a local extremum in the parameter along the curve of solutions.
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3.1.1. The case d = 1, p = 1. We can use the results of Rabinowitz (see [46]) in the
case d = p = 1 and when the connectivity operator J is a symmetric convolution. In that case
the zeros of the eigenstates of J are simple on Ω ⊂ R (because they are cos and sin functions).
Moreover, the Taylor formula allows us to write S0(x) = xh(x) with h > 0. Then from [46] it
follows that the bifurcated branches6 Cn (pitchfork or transcritical) meet (λn, 0) and ∞ and
are characterized by the number of zeros of their elements; namely, for all (Vf , λ) ∈ Cn, Vf

has exactly n− 1 zeros in Ω. As a consequence, the branches Cn do not intersect.
If we were able to prove that all the stationary solutions are connected to the zero solution,

we would have completely characterized B. Nevertheless, it is still a lot of information.
Remark 7. The study of the simpler case is very important for the numerics. Indeed, it

allows analytical predictions. When one performs the (λ, μ, ε)-continuation, one should look
at the section of solutions (λ, μ = 0, ε = 0) and compare them to the predictions of the simpler
case to see if the numerics missed any solutions (as may happen when the system has some
symmetries).

3.2. Returning to the original equation. The overall picture that emerges from the pre-
vious section is interesting despite the fact that some of its features are hard to justify from
the biological viewpoint, such as the lack of external input and a possibly negative rate func-
tion S0. The reason is that it gives clues about the set of persistent states when ε �= 0 and
provides a way to compute them numerically. Starting with the trivial solution Vf

0 of (3.2),
when the slope parameter λ is null, we can perform a numerical continuation with respect to
the two parameters λ, ε.

When ε �= 0, the only bifurcations that are possibly unaltered are the turning points. The
transcritical/pitchfork bifurcations will be “opened” as described below. We are still able to
predict the stability near the points (0, λn). Let us denote Ī = 〈μJ ·S(0) + εIext, e

∗
n〉F . Then,

the Lyapunov–Schmidt method [30, 41] leads to

(3.8) 0 =

(
−1 +

λσn
4

)
x+ χ(n)

q xq + Ī + o(xq).

Notice that when q = 2, we find the same equilibria as those of the Bogdanov–Takens
normal form, and for q = 3, we obtain a cusp. Solving the polynomial equation (3.8) allows us
to describe different opening scenarios depending on the sign of Ī. The cases Ī > 0 are shown
in Figure 3. The case of λ1 is a little bit special according to Proposition 3.3 and is shown
in the right-hand part of Figure 3. Note that if Ī = 0, a nongeneric situation, the pitchfork
bifurcations are not opened by the addition of the external current.

Remark 8. When the first eigenvalue generates a “well-oriented” pitchfork branch, Propo-
sition 3.3 says that a turning point must occur on this branch: there are two turning points on
this branch. Still we have a local description, and it would be interesting to have more global
results concerning, for example, the behavior of these turning points when (λ, ε) varies.

4. Reduction to a finite dimensional analysis. Neural field models are one of the possible
generalizations of standard neural networks considered as discrete sets of connected neurons.
They can be characterized by two limit processes. First, we let the total number of neurons

6Here they are connected components in C1(Ω,R)× R+ rather than in F × R+.
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Figure 3. Opening of the pitchfork bifurcation at the first (right) and nth (n > 1, left) eigenvalue. Black
dots indicate saddle nodes. Note that there are three such points (see Proposition 3.3) for the first eigenvalue.
Note that the branch may have a more intricate shape than the one shown.

grow to infinity so that each node of the network represents an ideally infinite number of
neurons, in practice a large number of such neurons belonging to different populations—in
effect, a neural mass. Second, we assume that these neural masses form a continuous neural
material and let the connectivity graph of the neural network become continuous. The graph
connectivity matrix then turns into a continuous function of the spatial coordinates. One
would think that, after passing twice to the limit, the resulting system would be infinite
dimensional. However, the dimensionality of the neural field models depends essentially upon
the linear operator J representing the connectivity function. If this linear operator has a
finite dimensional range, we show below that the corresponding neural field model is finite
dimensional and is equivalent to a finite set of ODEs. Moreover, even if this condition is not
met, we also show that we can always approximate the operator as accurately as desired by a
finite dimensional range operator and reduce the neural field model to a finite set of ODEs.

4.1. The Pincherle–Goursat kernels. In our numerical studies we use connectivity func-
tions that are such that the corresponding linear operators of F have finite rank; i.e., their
range is a finite dimensional subspace of F . This is without loss of generality because of the
following theorem (see, e.g., [13]).

Theorem 4.1. The subspace Rf (F) of finite dimensional range linear operators of F is
dense in H, the set of linear compact operators of F .

Proof. This is true because F is a Hilbert space [13, Chapter 6].

In the area of integral equations, these operators are called Pincherle–Goursat kernels [50]
or PG-kernels. They are defined as follows.

Definition 4.2 (Pincherle–Goursat kernels). The connectivity kernel J(r, r′) is a PG-kernel
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if

J(r, r′) =
N∑
k=1

Xk(r)⊗ Yk(r
′),

where Xk, Yk, k = 1, . . . , N , are two sets of N linearly independent elements of F , and Xk(r)⊗
Yk(r

′) is the rank 1 p× p matrix Xk(r)Y
T
k (r′).

We have

J ·U =
∑
k

Xk〈Yk,U〉2,

where 〈·, ·〉2 is a short notation for the inner product in L2(Ω,Rp). Thus J ·U ∈ Span(X1, . . . ,
XN ), which we denote by R(J).

4.2. Persistent state equation for PG-kernels. We now cast the problem of the compu-
tation of the solutions of (2.10) into the PG-kernel framework:

V − Iext = J · S(λV).

Since V − Iext ∈ R(J), we can write V − Iext =
∑

k vkXk, and denote v = (vk)k=1,...,N . The
persistent state equation reads

vk =

〈
Yk, S

(
λ

(∑
k

vkXk + Iext

))〉
2

, k = 1, . . . , N.

This is a set of N nonlinear equations in the N unknowns v1, . . . , vN which can be solved
numerically using classical methods.

4.3. Reduction to a finite number of ODEs. In this section we reduce (2.1) (when J is
independent of t) to a system of ODEs. We write I instead of Iext for simplicity and denote
Sλ the function R

p → R
p defined by Sλ(x) = S(λx) for x ∈ R

p.

We denote R(J)⊥ the orthogonal complement of R(J) in F with respect to the inner
product 〈, 〉2:

F = R(J)⊕R(J)⊥.

We write

V = V‖ +V⊥,

where V‖ (respectively, V⊥) is the orthogonal projection of V on R(J) (respectively, R(J)⊥).
We have a similar decomposition for the external current I:

I = I‖ + I⊥.

We now decompose R(J) as a Cartesian product of p finite dimensional subspaces of G.
Because

Jij(r, r
′) =

N∑
k=1

Xi
k(r)Y

j
k (r

′), i, j = 1, . . . , p,
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each coordinate Vi, i = 1, . . . , p, of V satisfies

V̇i + αiVi =
N∑
k=1

〈Yk,S(λV)〉2 + Ii, i = 1, . . . , p.

Let us consider the p finite dimensional subspaces Ei, i = 1, . . . , p, of G, where each Ei is
generated by the N elements Xi

k, k = 1, . . . , N . We denote E⊥
i the orthogonal complement

of Ei in G. This induces a decomposition of F as the direct sum of the Cartesian product∏p
i=1 Ei = R(J) and its orthogonal complement

∏p
i=1E

⊥
i = R(J)⊥. We write Vi = V

‖
i + V ⊥

i

as well as Ii = I
‖
i + I⊥i . We then have

(4.1)

⎧⎪⎨
⎪⎩
V̇

‖
i + αiV

‖
i =

N∑
k=1

〈Yk,S(λV)〉2 + I
‖
i ,

V̇ ⊥
i + αiV

⊥
i = I⊥i ,

i = 1, . . . , p.

Considering the canonical basis ei, i = 1, . . . , p, of Rp, we define

V‖ =
p∑

i=1
V

‖
i ei, I‖ =

p∑
i=1

I
‖
i ei,

V⊥ =
p∑

i=1
V ⊥
i ei, I⊥ =

p∑
i=1

I⊥i ei.

We obtain the 2p-dimensional nonautonomous system of ODEs

(4.2)

{
V̇‖ + L ·V‖ = J · S(λV) + I‖,
V̇⊥ + L ·V⊥ = I⊥.

Remark 9. If I⊥ is stationary, then V⊥ converges to L−1I⊥.

5. One population of orientation tuned neurons: The ring model. As an application of
the previous results, we study the ring model of orientation tuning introduced by Hansel and
Sompolinski (see [29, 49, 20, 19, 10, 12]), after the work of Ben-Yishai (see [4]), as a model of
a hypercolumn in the primary visual cortex. It can be written as

τȦ(x, t) = −A(x, t) + S

(
λ

(∫ π/2

−π/2
J(x− y)A(y, t)dy/π + I(x)− θ

))
.

Some authors [10, 12] chose J to be a difference of Gaussians. On the other hand, Ben-
Yishai, in [4], started with a network of excitatory/inhibitory spiking neurons and derived
a meanfield approximation of this network yielding the activity response described by the
following equations:
(5.1){

τȦ(x, t) = −A(x, t) + S
(
λ
(∫ π/2

−π/2 [J0 + J1 cos(α(y − x))]A(y, t)dy/π + εI(x) − θ
))

,

I(x) = 1− β + β cos(α(x− x0)),
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α = 2, 0 ≤ β ≤ 1, and the threshold θ = 1 in the above cited papers. Being an activity
model and not a voltage model in the terminology of [20, 24], it is not directly amenable to
our analysis. We can either extend this analysis to activity models as shown in Appendix D
or do the following. We rewrite the previous equation as

τȦ = −A+ S(λ(J ·A+ εI − θ))

and perform the change of variable V = J ·A+ εI − θ. This leads to the following equations:

(5.2)

{
τ V̇ (x, t) = −V (x, t) +

∫ π/2
−π/2 [J0 + J1 cos(α(y − x))]S(λV (y, t))dy/π + εI(x)− θ,

I(x) = 1− β + β cos(α(x − x0)).

We are now in the case of the model studied in this paper with p = 1, d = 1, and Ω =
(−π/2, π/2). Note that since the x-coordinate represents an angle, this is not a neural field
model per se but rather a neural mass model.

The nonlinearity is often chosen to be a Heaviside function, or, as in [4], a piecewise linear
approximation of the sigmoid,7 or, as in [20, 19, 10], a true sigmoidal function. J1 can take
any sign and I is an external current coming from the Lateral Geniculate Nucleus (LGN). J0
is most of the time negative (see [4, 19, 10, 12]) but can be positive as well (see [12]): the Jis
can be thought of as the first Fourier coefficients of J , J0 being its mean value. We can, up
to a multiplication of the previous equation, make the assumption

J0 = ε0 ∈ {−1, 1} .
For example, in [19], we find J0 = −7.3, J1 = 11, β = 0.1, θ = 0, which are all taken

from [4] except for θ = 1. The slope is assumed to be λ = 1. Using the previous scaling, it
becomes J0 = −1, J1 = 1.5, λ = 7.3/s1 = 29.2, and θ → θ/7.3, which gives θ ≈ 0.1 in the
case of [4] and θ = 0 in [19].

The goal of this section is not to derive the whole bifurcation diagram of the ring model
but rather to show how the stationary solutions are organized and to give clues about the
dynamics in a given range of parameters. This study is helpful because many large scale
models of V1 use the ring model for the hypercolumns. We will see that, depending on the
stiffness of the nonlinearity, there may exist many stationary solutions which are all acceptable
responses of the network for a given input of the LGN. Thus these local orientation detectors
may behave less trivially than they were initially made for. These cortical states can make
the local dynamics sophisticated when the slope parameter λ is big enough.

5.1. Mapping the ring model to the PG-kernel formalism. Expanding the cosine in
the previous equation, and denoting by cosα (respectively, sinα) the function x → cos(αx)
(respectively, x → sin(αx)), we find that, depending on the sign of Ji, (εi = sign(Ji), i = 0, 1),

J = ε01⊗ 1 + ε1
√

|J1| cosα ⊗
√
|J1| cosα +ε1

√
|J1| sinα⊗

√
|J1| sinα =

2∑
i=0

εiXi ⊗Xi,

ε2 = ε1.

7This does not allow the computation of bifurcation branches but allows the detection of branching points.
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This formulation has the advantage of preserving the symmetries of W. With the notation of
the previous section, we have I⊥ = 0, and

τ V̇ ‖ = −V ‖ +W · S(λ(V ‖ + V ⊥
0 e−t/τ )) + εI‖ − θ,

where

(5.3) V ‖(x, t) = v1(t) + v2(t)
√

|J1| cosα x+ v3(t)
√

|J1| sinα x,
i.e., the model is three-dimensional. Note that the previous equation is a rewriting of (5.2)
without any approximation.

Similarly we have

(5.4) I = I‖ = 1− β +
β cosα x0√|J1|

X1︷ ︸︸ ︷√
|J1| cosα x +

β sinα x0√|J1|

X2︷ ︸︸ ︷√
|J1| sinα x .

As V ⊥(t) → 0, we restrict our study to the case V ⊥ = 0 even if we lose some of the “real”
dynamics by doing so. This is motivated by the fact that the dynamics is made of heteroclinic
orbits (as we will see in a moment) between persistent states belonging to the vector space
V ⊥ = 0. Hence, using this simplification, we are led to study the following three-dimensional
system:

(5.5)

⎧⎪⎨
⎪⎩
τ v̇1 = −v1 + ε0 〈S(λV ), 1〉+ εI

‖
1 − θ,

τ v̇2 = −v2 + ε1
√|J1| 〈S(λV ), cosα〉+ εI

‖
2 ,

τ v̇3 = −v3 + ε1
√|J1| 〈S(λV ), sinα〉+ εI

‖
3 ,

where 〈f, g〉 =
∫ π/2
−π/2 f(x)g(x)

dx
π , V is given by (5.3), and I

‖
i , i = 1, 2, 3, is given by (5.4).

Note that the basis (X0,X1,X2) is not orthogonal for this inner product.
This system enjoys the symmetries described by the following lemma.

Lemma 5.1. When I
‖
3 = 0, if v = (v1 v2 v3) is a solution, then so is (v1 v2 −v3). The

plane v3 = 0 is invariant by the dynamics.
Proof. This is a consequence of the fact that sinα is an odd function while cosα is an even

function.
It is easy to see that

E(v) = −〈v, Γv〉
2τ

+
1

τλ

∫ π/2

−π/2
S̄0(λv1ε0 + λv2ε1

√
|J1| cosα x+ λv3ε1

√
|J1| sinα x)dx

π

+
〈
εI‖ − θ, Γv

〉
,

where S̄0 is a primitive of S0 and Γ = diag(ε0, ε1, ε2) is an energy function for the dynamics,
i.e., v̇ = Γ · ∇E(v). Consequently, even for I nonspatially homogeneous, there are no non-
constant periodic trajectories or homoclinic orbits.8 Moreover, all bounded trajectories are

8This follows from the consideration of the time derivative of the energy E.
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stationary solutions or trajectories converging to stationary solutions. Having proven that
all trajectories are bounded for the neural field equations in Proposition 2.6, we have char-
acterized the dynamics. It remains to compute the stationary solutions and their attraction
basins.

Remark 10. We can generalize these facts to PG-kernels of the type J =
∑N−1

i=0 εiXi ⊗Xi

by choosing E(v) = − 〈v,Lv〉
2 + 1

λ

∑p
k=1

∫
Ω S̄(

∑N
i λεiviX

k
i (r)) dr + 〈I,v〉.

5.2. Finding the persistent states. In order to characterize the set B of stationary solu-
tions, we apply the scheme of section 3.1. Hence we study the following equation:

V = J · S0(λV ) + εI‖ + μ(−θ + J · S(0)).

The nonlinearity is the odd function:

S0(x) =
1

1 + e−x
− 1

2
.

Note that J · S(0) = 1
2 (ε0 + J1

2sinα(π/2)
απ cosα) =

1
2ε0 + ε1

√|J1| sinα(π/2)
απ X1. This gives

(5.6)

⎧⎪⎨
⎪⎩
τ v̇1 = −v1 + ε0 〈S0(λV ), 1〉+ εI

‖
1 + μ(−θ + ε0

2 ),

τ v̇2 = −v2 + ε1
√|J1| 〈S0(λV ), cosα〉+ εI

‖
2 + με1

√|J1| sinα(π/2)
απ ,

τ v̇3 = −v3 + ε1
√|J1| 〈S0(λV ), sinα〉+ εI

‖
3 .

5.2.1. The simpler case μ = ε = 0. This corresponds to finding the persistent states
when μ = ε = 0, ensuring that v = 0 is a solution. For the sake of simplicity, we reduce
the study to the case α �= 2, which breaks the translation symmetry so that we do not get
involved with equivariant bifurcation theory.

The Jacobian at v = 0 is given by (using some symmetries)

−Id3×3 + λs1K,

where s1 = S
(1)
0 (0) = 1

4 and the matrix K is equal to

K =

⎡
⎣ ε0 ε0

√|J1| 〈1, cosα〉 0

ε1
√|J1| 〈1, cosα〉 J1

〈
1, cos2α

〉
0

0 0 J1
〈
1, sin2α

〉
⎤
⎦ .

K has in general (for α ≈ 2) three real eigenvalues. Indeed, the operator J is self-adjoint
for the inner product defined above, but, as previously mentioned, the basis (X0,X1,X2)
is not orthogonal for this inner product, and hence the matrix K is not symmetric in this
basis. We denote σ1 the eigenvalue of K corresponding to the eigenvector (0, 0, 1), and σ2
and σ3 the two eigenvalues on its upper left-hand 2 × 2 submatrix. The values, denoted λi,
i = 1, 2, 3, corresponding to potential9 bifurcations are equal to 4/σi. The signs of the λi’s

give the number of bifurcated branches (recall that λ > 0). Because s2 = S
(2)
0 (0) = 0 and

9The upcoming nonlinear analysis will show that they are indeed bifurcation points.
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s3 = S
(3)
0 (0) = −1/8 �= 0, all branches are pitchfork branches (see section 3.1) whose third

order term is χ
(i)
3 = λ2

i
s3
6s1

〈
e3i , e

∗
i

〉
2
(≈ λ2

i
s3
6s1

‖e2i ‖22 < 0 for α ≈ 2). Hence these branches are
directed toward λ > λi. This is summarized in Table 1: The eigenvectors ei, i = 1, 2, 3, of the
Jacobian of (5.5) at v = 0 are given by

e1 = sinα, e2,3 = a2,3 + b2,3 cosα .

Table 1
Number of bifurcated pitchfork branches from (0, λ) depending on the values of ε0, ε1. The value of α in

(5.2) is close to 2.

�����ε0

ε1
-1 1

−1 0 2

1 1 3

We reduce the number of possibilities by assuming from now on that J1 > 0. It turns out
that in this case σ2 < 0 and there are only two possibilities to consider: σ1 < σ3 for α > 2
and σ3 < σ1 for α < 2. This gives the relative position of the different bifurcated branches,
denoted Pi, i = 1, 3. Once we have found the bifurcation point, we can numerically compute
the bifurcated branches for all positive values of λ using a continuation method (we used the
pseudo-arclength method as described, for example, in [48, 38]).

From our numerical experiments we conjecture that in the case ε0 = −1 and ε1 = 1, P1

and P3 satisfy the following properties:
1. P1 lies on the v3-axis.
2. P3 lies in the plane of the equation v3 = 0.
3. P1 and P3 do not intersect.
Remark 11. We can reverse the orientation of the pitchforks by choosing a nonlinearity

such that s3 > 0. The bifurcation diagram would be more complex: more saddle node points
would appear because of Proposition 3.3. It is the fact that s2 = 0 for the sigmoid which
produces pitchfork branches. Another choice of nonlinearity, for example, S(x) = 1

1+exp(−x+ε) ,
would produce transcritical branches. It is indeed difficult to imagine that s2 = 0 for an
experimental fit of a “real” rate function. But anyway we are not yet looking at the “real”
bifurcation diagram since we are assuming that ε = μ = 0.

Figure 4 shows a typical example corresponding to the values of the parameters that are
found in the largest number of published articles. We come back to this choice in section 5.3.
The left part of the figure shows the three components of the persistent states as functions
of λ. For P1 there is only one nonzero component, v3, in blue. For P3 there are two nonzero
components, v1 shown in red and v2 shown in green. The right part of the figure shows
another representation of P1 and P3 as curves parametrized by λ in the (v1, v2, v3) space. P3

is clearly in the (v1, v2) plane while P1 is along the v3-axis. The color at each point of the
curves represents the value of λ according to the color scale shown on the right.

In detail we have the following.
λ3 < λ < λ1. When λ goes through λ3, the 0-solution loses its stability and becomes a

saddle. There are three persistent states, 0 (unstable node) and two located on the pitchfork
branch P3, both stable. The corresponding dynamics is shown in the left part of Figure 4.
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Figure 4. Left: Plot of the bifurcation diagram for α = 2.2. It shows the two pitchfork branches P1 and
P3. For each branch, we have plotted only the nonzero coordinates with v1 = red, v2 = green for P3, and
v3 = blue for P1. We have also plotted the dynamics in two and three dimensions according to the values of the
slope parameter λ. Right: Plot of the equilibrium points. The color encodes the value of the slope λ (see text).
J0 = −1, J1 = 1.5, μ = 0, ε = 0, α = 2.2.

λ1 < λ. When λ goes through λ1, the 0-solution loses its stability along the v3-axis.
There are two new persistent states located on the pitchfork branch P1; both are unstable
nodes (the unstable manifold is one-dimensional). The corresponding dynamics is also shown
in the left part of Figure 4.

There are at most five stationary solutions.

Remark 12. In the case J0 = 1 and ε1 = 1, there is another pitchfork branch to handle; see
Table 1. For λ big enough, v = 0 becomes an unstable node and there are seven stationary
solutions instead of five in the case J0 = −1.

5.2.2. The case μ = 1, ε �= 0. We are now halfway toward completion of our scheme.
To have an idea of the persistent states at low contrast (i.e., ε ≈ 0), we need to know the
persistent states for λ, μ = 1, ε = 0; that is, we need to know the solutions of

V f
λ = J · S(λV f

λ )− θ.

Following our program, we numerically compute the persistent states when the slope λ
and μ both vary. As described in section 2.3, we expect many of the previous bifurcations
to disappear, thereby breaking some of the connectivity of the sets Bλ which can actually be
(partially) recovered by considering the sets Bλ,μ This was done using the library TRILINOS
(see [48] and the website) using multiparameters continuation.

We show an example of this continuation in Figure 5(Left), where we display the v2
component of the persistent states as a function (sometimes multivalued) of λ and μ. A cross-
section of this set by the plane of equation μ = 0 (shown as semitransparent in the figure)
yields a curve identical to that shown in green in Figure 4(Left). The figure nicely shows how
the first pitchfork bifurcation branch P3 opens up when μ becomes nonzero: this gives the

http://trilinos.sandia.gov
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Figure 5. Left: The v2 component of the 2-parameter continuation (λ,μ) for θ = 0.1, α = 2.2, J0 = −1,
J1 = 1.5. Right: Plot of the equilibrium points. The color encodes the value of the slope λ. J0 = −1, J1 = 1.5,
μ = 1, ε = 0, α = 2.2, θ = 0.1.

connected component of Vf
λ which is linearly stable.

(5.7)

⎧⎪⎨
⎪⎩
0 = v1 − ε0 〈S0(λV ), 1〉 + μ(−θ + ε0

2 ),

0 = v2 − ε1
√|J1| 〈S0(λV ), cosα〉+ με1

√|J1| sinα(π/2)
απ ,

0 = v3 − ε1
√|J1| 〈S0(λV ), sinα〉 .

However, as can be seen from Figure 5(Right), nonzero values of μ do not break the
pitchfork P1. It is easy to qualitatively understand why, even though a full mathematical
proof is hard to come up with: μ does not affect the third equation which produces the
pitchfork P1. We can prove it locally for μ near 0 using the implicit function theorem. We are
looking for a point (v1(μ), v2(μ), 0) at which a pitchfork occurs for λ = λ1(μ). Let us consider

(5.8) H(v1, v2, λ;μ) =

⎡
⎣ v1 − ε0 〈S0(λV ), 1〉 + μ(−θ + ε0

2 )

v2 − ε1
√
J1 〈S0(λV ), cosα〉+ με1

√|J1| sinα(π/2)
απ

1− λJ1
〈
DS0(λv1X0 + λv2X1), sin

2
α

〉
⎤
⎦,

where the last component of H(v1, v2, λ;μ) is the partial derivative with respect to v3 of the
third equation in (5.7). It is easy to see that H(0, 0, λ1; 0) = [0 0 0]. The Jacobian of H with
respect to (v1, v2, λ) at (0, 0, λ1, 0) is (because S(2)(0) = 0)⎡

⎣ −1 + λ1s1ε0 λ1s1ε1
√|J1| 〈1, cosα〉 0

λ1s1ε0
√|J1| 〈1, cosα〉 −1 + λ1s1J1

〈
1, cos2α

〉
0

0 0 −s1J1
〈
1, sin2α

〉
⎤
⎦ ∈ GL3(R).

Hence there exists a unique solution defined locally for μ ≥ 0 satisfyingH(v1(μ), v2(μ), λ1(μ);μ)

= 0: we have found a bifurcated point. Moreover, as χ
(3)
1 (μ = 0) �= 0, it will remain so for
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Figure 6. Plot of the three components (v1, v2, v3) = (red, green, blue) as functions of the slope λ for the
following values of the parameters: J0 = −1, J1 = 1.5, μ = 1, ε = 0, α = 2.2, θ = 0.1. Remember that the
slope of the model has to be around λ = 29 in order to be compatible with previous work.

small μ: the pitchfork P1 is not affected by μ. For large values of μ we have to rely on
numerical simulations.

Now, because of Lemma 5.1, the solutions (v1, v2) corresponding to v3 �= 0 (i.e., lying on
the pitchfork branch) are the same for v3 and −v3, which gives the branch 2-3 in Figure 6.
Hence, when μ �= 0, we still have the pitchfork P1 and the branch (located in v3 = 0) arising
from the opening of P3. This gives the diagram shown in Figure 6 for the three components
of v. The left part of the figure shows the case μ = 0.2, while the right part shows the case
μ = 1, the one we are interested in. Each triplet of (red, green, blue) curves represents the
variation of (v1, v2, v3) as a function of the parameter λ. They are labeled by integers between
1 and 5.

This diagram is a bit misleading because if we count the red components, there are four of
them for λ > λ1, which gives an even number of solutions (in contradiction to Proposition 2.9).
In fact by doing so we miss the symmetry v3 ↔ −v3 and the corresponding solutions. It is
easier to look at Figure 5(Right) to count the stationary solutions.

From section 3.1, it follows that the connected branch of V f
0 is stable, and so is the branch

P1. The only unstable branch comes from the opening of P3 and is shown in Figure 5(Right).

Remark 13. Figure 5 gives a good example of how our scheme allows us to detect another
branch of solutions which is not connected to the connected component of the trivial solution.

Figure 6 also tells us which branches will appear when the contrast satisfies ε �= 0: this
will be a perturbation of Figure 5. Except in the case x0 = 0 (see (5.2)), the pitchfork P1

will open up, giving two other connected components in addition to the connected component
of Vf

0 .

To illustrate these ideas further, we have plotted in Figures 7, 8, and 9 all the persistent
states (i.e., the functions Af (x) = S(V f (x)) for −90◦ ≤ x ≤ 90◦) for various values of the
slope λ, and the contrast ε. In detail we have εI(x) = ε(1− 0.1 + 0.1 cosα(x− 0.1)), α = 2.2,
J0 = −1, J1 = 1.5, and μ = 1. Unstable solutions are shown in dotted lines and stable
solutions in continuous lines. The width of the continuous lines is proportional to the smallest
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Figure 7. Stationary solutions for the ring model with no input current (ε = 0.0) for three values of the
slope parameter λ. From left to right, λ = 14, 20, 29. For λ = 14 there are three solutions, two stable (shown
in continuous line), and one unstable (shown in dotted lines). For λ = 20 and λ = 29 there are five solutions,
two stable, and three unstable; see text.

Figure 8. Stationary solutions for the ring model with an input current corresponding to the contrast
ε = 0.05 for three values of the slope parameter λ. From left to right, λ = 14, 20, 29. In all three cases there are
at most five solutions, two of them stable (shown in continuous lines), and three (only one for λ = 14) unstable
(shown in dotted lines); see text.

magnitude of the (negative) eigenvalues of the Jacobian of the system for this solution. We
show in Appendix F that this magnitude is a lower bound of the size of the corresponding
attraction basin. The external current I(x) is plotted as a red continuous line in Figures 8
and 9.

Figures 7 and 8 correspond to the cases ε = 0 (no input current) and ε = 0.05, respectively.
In each figure the three subfigures correspond, from left to right, to the increasing values 14,
20, and 29 of the slope λ. In the case of Figure 7 the number and the stability of the solutions
can be predicted directly from the right-hand side of Figure 6, while for Figure 8 this can be
achieved from a perturbation of the same figure. Note that, except for the unstable solution
peaking at x = 0◦, the effect of increasing the slope of the sigmoid is to increase the amplitude
of the solutions, as can be seen from an examination of the branches labeled 4 in the right-hand
side of Figure 6.

Figure 9 corresponds to an even higher current than in Figure 8; i.e., the contrast ε is
equal to 0.1. In this case we show only the stationary solutions for the values 20 and 29 of
the slope parameter because there is little difference between the cases λ = 14 and λ = 20.
We note that the effect of increasing the slope is the same as in Figure 8 and that for a given
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Figure 9. Stationary solutions for the ring model with an input current corresponding to the contrast
ε = 0.1 for two values of the slope parameter λ. From left to right, λ = 20, 29. In both cases there are five
solutions, two of them stable (shown in continuous lines), and three unstable (shown in dotted lines); see text.

slope, the effect of increasing the contrast ε is also to increase the amplitude of the solutions,
except for the unstable solution peaking at x = 0◦. The labels of the five solutions are the
same as in Figure 6. The reader should have no problem transferring them to the solutions
plotted in Figures 7 and 8.

5.3. Discussion. There are two reasons why we presented this example. First, it is a
nice simple model to which the formalism of this article easily applies and allows us to push
the analysis far enough to grasp an almost complete understanding of its persistent states
and a somewhat detailed understanding of its dynamics. Second, it conveys information for
models of V1 that is likely to be biologically relevant. For example, as the slope λ of the
sigmoid is increased, many (up to four depending on the signs of (J0, J1)) new stationary
states appear whose stability evolves with λ. One of these solutions is “dramatic” for the
purpose of orientation detection: even if the LGN input orientation peaks around the angle
x0 = 0, the ring model can produce a stable cortical state (or a percept) corresponding to an
angle of π/2!

However, these solutions may be destabilized by adding lateral spatial connections in a
spatially organized network of ring models; this remains an area of future investigation. As far
as we know, only Bressloff and coworkers looked at this problem (see [11, 12]): they studied the
local dynamics around the bifurcation points but did not look at nonlocal dynamics (basically
they considered that there were two stationary solutions around a bifurcation point and forgot
about the third one predicted by Proposition 2.9).

There is no biologically motivated restriction on the values of the slope λ, which can be as
large as desired, without mentioning the fact that neural mass models are very often written
with a Heaviside function for the nonlinearity, which, as mentioned previously, is the limit
case: H(x) = limλ→∞ S(λx).

We also made the assumption that α �= 2 in the previous analysis. It remains to know
how much of the preceding holds in the case α = 2 and, more generally, what would remain
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if one were to choose a difference of Gaussians as a connectivity function over a cortex Ω =
(−π/2, π/2). We expect many similarities if the width of the difference of Gaussians is of the
same order of cosα.

6. Two populations of spatially organized neurons. We now apply the previous analysis
to a system we started to analyze in [26]. In the somewhat reduced form we consider here, it
consists of two populations (p = 2), one excitatory and one inhibitory, distributed over a flat
(d = 2) cortex Ω = [−1, 1]2. The connectivity matrix kernel writes as

(6.1) J(r, r′) =
[
aG11(r− r′) −bG12(r− r′)
bG21(r− r′) −cG22(r− r′)

]
,

where the Gij(r) = e
− ‖r‖2

2σij are two-dimensional Gaussian functions defined on R
2 with G12 =

G21. a, b, c > 0 characterize the strength of the connections. We also assume Iext = 0.
The parameter μ controlling the translation of the sigmoid (see (3.3)) is therefore the only
parameter, outside λ, that we will vary from 0 to 1. We also choose (notice that s2 �= 0)

S(x) =
1

1 + e−x+θ
, θ = 1.3.

In [26], we were able to compute the stationary solutions Vf
λ,μ=1 when the slope λ was

small (i.e., λ < λ∗) using the Nystrom method. We now know that if we perform a continuation
of these solutions with respect to λ, we are bound to miss quite a few of them. Therefore,
we perform a two-parameter continuation with respect to the pair (λ, μ) in order to recover
more, if not all, stationary solutions.

Biologically speaking, no systematic investigation has been performed to test the validity of
the translation invariance of the connectivity function. Hence a roughly translation invariant
connectivity function (called heterogeneous in [21]) is not less biologically relevant. This is
where the PG-kernels are useful: they provide an easy way to approximate the convolution
operation as well as an effective representation of the connectivity (see section 4).

There are four reasons why we think this example is interesting:
• We want to show how to deal with heterogeneous kernels.
• We want to give a nontrivial example of the existence of a branch of solutions not

connected to the trivial solution Vf
0 .

• We want to show an example of an application of Proposition 3.3.
• More importantly, we want to show how the results of section 3.1.1 may change in the

two-dimensional case.
As in the previous case, we are not interested in having the complete bifurcation diagram

of the system but rather in giving numerical examples of the previously enumerated points.

6.1. PG-kernel approximation of J. Let us write

e−‖r−r′‖2/2 = e−‖r‖2/2e−‖r′‖2/2e〈r,r
′〉 ≈ e−‖r‖2/2e−‖r′‖2/2

(
1 + 〈r, r′〉+ 1

2
〈r, r′〉2 + . . .

)
.

We notice two important facts:
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• 1 + 〈r, r′〉 + 1
2〈r, r′〉2 + . . . is a polynomial in the components of r and r′ and hence a

PG-kernel.
• e−‖r‖2/2 has a bell-shape which we approximate with the function (1 − ‖r‖2)a with

a > 0. This choice is also motivated by the fact that e−‖r‖2/2 tends to zero at the
edges of the infinite cortex that is usually considered in the literature. We keep this
property with our finite cortex since (1 − ‖r‖2)a = 0 on the boundary ∂

(
[−1, 1]2

)
of

[−1, 1]2. Any other positive bell-shaped function would be appropriate.

Putting these two facts together, we end up with the following approximation of a Gaussian
convolution kernel with a PG-kernel:

(6.2) Jij(r, r
′) = Cij +

(
1− ‖r‖2

)aij(
1− ‖r′‖2

)a′ij
Pij(r, r

′), i, j = 1, 2,

where P is a 2×2 matrix with polynomial entries in r and r′ and C is a constant 2×2 matrix.

Remember from section 2.1 that for d = 2 we require m = 1; i.e., F = W1,2(Ω,R2). Thus
‖J‖F < ∞ imposes 2(aij − 1) > −1; hence aij > 1/2, and similarly for a′ij .

6.2. Numerical experiments. In these numerical experiments we choose a11 = a′11 = 3,
a12 = a′12 = a21 = a′21 = 2, a22 = a′22 = 4, a = 10, b = 15, c = 12.75, and L = 0.5Id. The

polynomials Pij(r, r
′) are equal to the fourth-order Taylor expansion of e

〈r,r′〉
σij , with σ−1

ij = aij .

This results in the following expressions for the two components V f
1 and V f

2 of the persis-
tent state Vf :

V f
1 = Q11(r)

(
1− ‖r‖2

)3
+Q12(r)

(
1− ‖r‖2

)2
,

V f
2 = Q21(r)

(
1− ‖r‖2

)2
+Q22(r)

(
1− ‖r‖2

)4
.

The polynomials Qij, i, j = 1, 2, are of degree 4. The total number of parameters needed for
representing a persistent state is therefore equal to 5 × 5 × 4 = 100 variables. This number
comes from the fact that we have four polynomials Qij , i, j = 1, 2, of total degree 10 in two
variables that are the products of two polynomials in one variable of degree 4. The reason for
this is the special form of the polynomials Pij(r, r

′) which are functions of the inner product
〈r, r′〉. This is a somewhat crude approximation of the convolution kernel (6.1).

Each of these 100 variables is a function of the slope parameter λ and contrast parameter
μ. We represent in Figure 10 the infinity norm of the 100-dimensional vector Vf as a function
of the slope parameter λ for μ = 0.

All our analytical predictions are performed, for convenience and simplicity, on the con-
volution kernel J. They are likely to carry over to the heterogeneous approximate case.

The general analysis having been conducted (see section 3.1), we wish to do some specific
computations to explain the numerical results: the first thing to do is to find the eigenelements
of J.

For each n = (n1, n2) ∈ N consider the function cosn : R2 → R defined by cosn(r) =
cos(n1r1 + n2r2), and the vector subspace Xcosn of F defined by Xcosn = {V | V = cosn v,
v ∈ R

2}. Xsinn is defined in a similar fashion.

It is easy to check that the vector subspaces Xcosn of F are invariant by the linear operator
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Figure 10. Plot of the infinity norm ‖ · ‖∞ of the 100-dimensional vector Vf as a function of the slope
parameter λ for μ = 0. Notice that Vf = 0 is solution for all values of λ. The red and green branches
corresponding to the values λn1 and λn2 of the slope parameter are marked with black disks and intersect at
the point indicated by a black diamond. The dashed line (blue) is a set of solutions that is not connected to the
component corresponding to the trivial solution Vf = 0. SN stands for saddle-node.

J, and, by parity, that J ·Xsinn = 0 for all n ∈ N
2. We have

J · (cosn v) = cosn Ĵ(n)v = cosn

[
aĜ1(n) −bĜ2(n)

bĜ2(n) −cĜ3(n)

]
v ∀v ∈ R

2,

where Ĵ, Ĝi are the Fourier transforms of J and Gi.

Keeping the notation of section 3.1, we find that

σn ∈
⋃

m∈N2

σ
(
Ĵ(m)

)

and the corresponding eigenvectors10 are in Xcosn for some n ∈ N
2 and hence of the form

cosn v for some v ∈ R
2. We have chosen the Gaussians Gi such that the first eigenvalues are

10We do not prove that we obtain all of them, though it appears that these particular eigenelements are
sufficient to explain the numerically observed facts.
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Figure 11. Plot of the first component V f
1 of the solution Vf along the red-green dotted branch connecting

λn1 to λn2 in Figure 10.

simple and hence each point λn is a bifurcation point: the corresponding χ-factors are

χ
(n)
2 ∝ 〈cos2n, cosn〉 = 0 if n �= �0,

χ
(0)
2 �= 0.

Hence λ0 is a transcritical bifurcation point, whereas the other points λn are pitchfork bifur-
cation points. Depending on the vector v, the orientation of the pitchfork may change.

In Figure 10 (case μ = 0), we see two pitchforks at λn1 , λn2 and the transcritical branch
at λ0. The first pitchfork at λn1 (red branch) is oriented toward the decreasing λ’s; thus
according to Proposition 3.3, a saddle-node (denoted SN in the figure) must appear. The
same is true for the transcritical branch (continuous blue branch). Locally (near λ0), each

coordinate V f
i , i = 1, 2, is “flat”; i.e., it looks like cos0.

The bifurcation points λn1 and λn2 are connected by the red-dotted branch. It cannot
be seen from this graph that this is true (because two states with the same norm may be
different), but it can be checked by looking at the 100 components. We plot in Figure 11 the

stationary membrane potential V f
1 of the first population for different values of λ along the

branch connecting λn1 to λn2 .
The last interesting fact is that our multiparameter scheme allows us to compute branches

that are not connected to the trivial solution (here Vf = 0) as one can see in Figure 10:
the dashed blue branch cannot be detected by λ-continuation of the trivial solution Vf = 0
because it does not intersect any branch coming from Vf = 0. This, again, cannot be read
directly from Figure 11; one has to look at all 100 components.

Remark 14. We have chosen the parameters a, b, c such that the first three eigenvalues have
zero imaginary parts. Numerically, most of the other eigenvalues σn have nonzero imaginary
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parts leading to Hopf bifurcations. Other stationary bifurcation may appear for large slope
values (i.e., λ > 40).

7. Discussion. In this section we briefly discuss two important aspects of our model with
respect to the biology.

7.1. Is the cortex really finite? An important aspect of our work is that we assume
that the domain Ω is bounded, in agreement with the fact that biological systems have finite
sizes. As pointed out in the introduction, this has the effect of simplifying somewhat the
functional analysis of the problem. Our analysis then relies essentially on the fact that the
operator defined by the connectivity function is compact and hence also its Frechet derivative.
The spectrum of this derivative is therefore at most countable, 0 being an accumulation point
in the case when it is infinite. The inverses of its positive eigenvalues (multiplied by 4; see
(3.7)) determine the possible points of bifurcation of the steady-state solution with respect
to the slope parameter λ. They accumulate at +∞ but will in general have values smaller
than the range of values biologically relevant. Assuming in the worst case that each of these
values corresponds to a bifurcation, if they are very close to each other, the task of the
numerical continuation program will become extremely difficult. This situation occurs when
the spread of the connectivity function J is very small with respect to the size of the domain Ω,
making the finite size assumption questionable from the practical viewpoint. In order to get
a feeling for the domain of applicability of our theory, we have done the following experiment.
Assume that the domain Ω is one-dimensional, and of length a. Assume further that the local
interaction is described by a Gaussian with zero mean and variance σ2 normalized in such a
way that its integral on the interval [−a/2, a/2] is equal to 1. The eigenvalues σn of J can be
computed analytically as the Fourier coefficients of the function J. As was just mentioned,
they accumulate at 0 since J is compact. What is important is the separation of their inverses
(the λn’s). For a ratio σ/a equal to 10% the first 10 positive λn’s are given by

n 1 2 3 4 5

1.000 1.218 2.202 5.909 23.530

n 6 7 8 9 10

139 1220 15785 337734 0.2629893107

If we decrease the ratio to 5%, these numbers become

n 1 2 3 4 5

1.000 1.051 1.218 1.559 2.202

n 6 7 8 9 10

3.4341 5.909 11.224 23.530 54.445

and if we decrease the ratio to 1%,

n 1 2 3 4 5

1.0000 1.0020 1.0079 1.0179 1.0321

n 6 7 8 9 10

1.0506 1.0736 1.1015 1.1347 1.1734
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We conclude from this numerical experiment that our methods are applicable in a straight-
forward fashion for ratios roughly above 2–3%.

Now, what does the biology tell us about the ratio σ/a? In the cat area 17 (analogous to
V1 in humans), it is commonly agreed that excitatory connections can span as much as 8mm,
whereas inhibitory connections are limited to 3mm for an area which is roughly 25x20mm
and hence a ratio between 12% and 32%. In humans, less data is available, but Bressloff
et al. in [12] use a lateral connectivity function spanning 10mm for an area V1 with area
144x96mm and hence a ratio of roughly 7%. In both species we are well within the range of
separation of the eigenvalues that poses no numerical problems to the continuation methods.

7.2. How steep should the sigmoid be? When the slope λ of the sigmoid in the model
increases without bound, the sigmoid converges toward the Heaviside function. As shown in
the paper, when λ increases, we predict the appearance of a variety of new stationary solutions
of the neural field equations. From the biological viewpoint one observes hard thresholds at
the level of single neurons’ f-I curves [33], the curves that relate the external current to the
firing rate. At the population level, the one described by the neural field equations, these
hard thresholds are smoothed over by the effect of population averaging. Our mathematical
analysis can provide an answer to the question of how steep a sigmoid is from a biological
perspective. The answer is related, in the case of the ring model, to the connection between the
slope parameter λ and the connectivity function J. As shown in (5.1), the relevant parameter
is the product λ|J0| which is constrained by (a) the fact that it must be larger than the first
bifurcation value in order for the model to produce tuning curves, and (b) the fact that it must
be smaller than the value for which the tuning curves saturate and hence do not vary with
the contrast anymore, in contradiction to the biological measurements. For each application
of the neural field equations this is how the biology enters the mathematics to constrain the
model parameter values.

8. Conclusion. In this paper we have pursued the analysis, started in [24, 26], of a spe-
cial type of integro-differential equation that appears in neural field and neural mass models
where we are interested in approximating mesoscopic and macroscopic ensembles of neu-
rons by continuous descriptions. We call these equations neural equations. As in those two
previous papers, our approach is based on functional analysis to obtain clean results about
the well-posedness of these equations from which we can study the questions of existence
and uniqueness of the solutions. In this article we have enforced more spatial regularity by
choosing the Sobolev, and Hilbert, space Wm,2(Ω) instead of the space L2(Ω) that we used
previously. The reason for this change is not only technical; it allows us to study the ques-
tion of the bifurcation of the solutions, while ensuring that the membrane potential (or the
activity) remains finite on the cortex.

In effect these equations depend upon a number of biological or experimental parameters
such as the slope λ of the nonlinearity, the connectivity matrix J, or the input I. These
parameters vary in general in neural populations because of such processes as plasticity and
learning. It is therefore important to understand how the solutions of these equations vary
when these parameters change. To this end, we used two theories: the degree theory and the
bifurcation theory. The degree theory does not require the above spatial regularity because
it describes the general behavior of the cortical states as the parameters vary. On the other
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hand, the bifurcation theory describes the precise local behaviors of the cortical states as
the parameters vary and requires spatial regularity to be able to complete the numerical
computations.

We believe that a good model should exhibit bounded membrane potentials which requires
taking a bounded nonlinearity (as opposed to some papers; see, for example, [4]). The degree
theory yields the powerful estimate that the number of persistent states has to be odd; hence
it predicts an additional persistent state in the neighborhood of pitchfork/transcritical bifur-
cation points. This extra point is invisible to bifurcation theory, which is a local theory (this
was conjectured numerically in [21]). It may drastically change the dynamics and shows that
local analysis is not sufficient for the study of the neural field equations.

We have focused on the description of the stationary solutions of the neural equations
when varying the slope parameter and tried to numerically compute the additional persistent
state given by the degree theory for arbitrary external current and connectivity. As the set
of stationary solutions may not be connected, we used a multiparameter continuation scheme
in order to compute nonconnected branches of solutions and were able to show examples of
these (see sections 5 and 6). Whether these different branches of solutions intersect or are
unbounded is still unknown in the general case. However, the scalar case for a one-dimensional
cortex (p = 1, d = 1, Iext = 0) is almost completely solved (see section 3.1.1). This point has
never been mentioned in the literature to our knowledge. The question of whether we have
computed all the solutions by using our multiparameter scheme is unfortunately still open.

To summarize, using a bounded nonlinearity for the firing rate introduces new stationary
solutions that were not predicted before. This suggests that the analysis of neural field models
(of the visual system or of the memory, for example) should be re-examined. This is the focus
of our current efforts.

Appendix A. Well-posedness of operators. We prove Proposition 2.3.
Proof. The integral in the right-hand side of (2.2) exists because for almost all r ∈ Ω the

p2 elements Wij(r, ·, t), i, j = 1, . . . , p, of J are in L2(Ω) for all t > 0 and the p coordinates of
V(·, t) are in L2(Ω) for all t > 0.

For each t > 0 this right-hand side defines an element of Wm,2(Ω). Because of Fubini’s
theorem it is clear that [J(t) ·V(t)] is an element of L2(Ω) for all t > 0.

Next, for each multi-index α, |α| ≤ m, Dα[J(t) ·V(t)] is defined by

〈Dα[J(t) ·V(t)],Φ〉L2(Ω) = (−1)|α|〈[J(t) ·V(t)],DαΦ〉L2(Ω)

for all Φ in C∞
0 (Ω,Rp), the space of infinitely differentiable R

p-valued functions defined on Ω
with compact support. Applying Fubini’s theorem again, we obtain that the right-hand side
of the previous equality is equal to

〈[DαJ(t) ·V(t)],Φ〉L2(Ω).

This proves that Dα[J(t) ·V(t)] exists for all t > 0, all multi-indexes α, |α| ≤ m, and is equal
to [DαJ(t) ·V(t)]. To see that it is in L2(Ω), just apply Fubini’s theorem again.

Appendix B. Fixed point theorems. We briefly describe some applications of Brouwer’s
and Leray–Schauder’s degree theories. They are central in the proofs of parts 4 and 5 of
Proposition 2.9.
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We first recall Schaeffer’s theorem and provide a short proof based on the Leray–Schauder
degree.

Theorem B.1 (Schaeffer). Let X be a real Banach space. Suppose M : X → X is a compact
mapping and

S = {x ∈ X | ∃t ∈ [0, 1] such that x = tM(x)}
is bounded. Then M has a fixed point.

Proof. We provide for completeness a short proof based on the Leray–Schauder degree
theory. Taking r > 0 large enough such that S ⊂ B◦

r , we define m(x, t) = x − tM(x) on
B̄r × [0, 1]. Then 0 /∈ m(∂Br × [0, 1]) by construction. According to the homotopy invariance
of the Leray–Schauder degree,

degLS(Id−M,Br, 0) = degLS(Id, Br, 0) = 1 �= 0;

thus, according to the Kronecker property of the Leray–Schauder degree, there exists a solution
to the equation M(x) = x.

We can apply this theorem to prove existence of solutions to (2.10). We consider the
function F̃ : F → F defined by

F̃ (V, λ) = −F (V, λ) +V = J · S(λV) + I,

where F is defined in (2.10).
It is known that F̃ is a nonlinear compact operator of F [26]. We can apply Schaeffer’s

theorem to the function F̃ since it is easy to prove (see [26]) that for all V such that F̃ (V, λ) =
tV the following holds:

(B.1) ‖V‖F ≤ t(λ
√

p|Ω|‖J‖F + ‖I‖F ),
where ‖ ‖F is the Frobenius norm.

Hence for all λ there exists Vf
λ such that

F̃ (Vf
λ, λ) = Vf

λ.

The following easy consequence of the proof of Theorem B.1 is used in the article.
Corollary B.2. For each λ ≥ 0 there exists an open bounded set Uλ containing S (defined

in Theorem B.1) such that degLS(Id− F̃ ,Uλ, 0) = 1.
We next give without proof a theorem due to Leray and Schauder.
Theorem B.3 (Leray–Schauder). Let X be a real normed space, J = [a, b], and M : X×J →

X be of the form Id+m with m : X × J → X compact on X × J . Let

Σ = {(x, λ) ∈ X × J : M(x, λ) = 0} ,
and for each λ ∈ J , let

Σλ = {x ∈ X : (x, λ) ∈ Σ} .
Assume that Σa is bounded and that

degLS(M(., a),U , 0) �= 0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

992 ROMAIN VELTZ AND OLIVIER FAUGERAS

for some open bounded set U ⊃ Σa.

Then Σ contains a connected component C intersecting Σa×{a} and which either intersects
Σb × {b} or is unbounded.

Appendix C. Compact operators with simple eigenvalues.
Proposition C.1. For every m ∈ N

∗, the set of compact operators with m simple first eigen-
values is dense in the set of compact operators.

Proof. The set Rf (F) of finite dimensional range linear operators is dense in the set H of
the linear compact operators of F [13]. Thus we need only to prove the theorem for Rf (F).
Let us consider J ∈ Rf (F), and R(J) = Span(e1, . . . , ek), k ≥ m. Without loss of generality
we assume that the first eigenvalue of J has multiplicity 2, i.e., β1 = β2. Its corresponding
Jordan block is then [

β1 ε
0 β1

]
.

Then if we define Jn = J+ 1
ne2 ⊗ e2, we have limn→∞ Jn = J. The first two eigenvalues

β1 and β1 +
1
n of Jn are simple, i.e., Jne1 = β1e1 and Jn(nεe1 + e2) = (β1 +

1
n)(nεe1 + e2).

We can do the same for the other eigenvalues and define an operator Jn with m simple first
eigenvalues and a finite dimensional rank and which is arbitrarily close to J.

Proposition C.2. The same proposition holds for operators of the type Id + J where J is a
compact operator.

Proof. The proof follows from that of Proposition C.1.

Appendix D. Reduction of the activity-based model to a finite number of ordinary
differential equations. We consider the equation for the activity-based model:

(D.1)

{
Ȧ = −La ·A+ Sλ (J ·A+ I) , t > 0,
A(·, 0) = A0(·).

We recall that La �= L (see [20]) because they do not have the same biological meaning:
One is related to the synaptic time constant and the other to the cell membrane time constant.
We let La = diag(α1, . . . , αp).

We also recall the PG-kernel decomposition of J =
∑

k Xk ⊗ Yk.

Each of the p coordinates Ai, i = 1, . . . , p, of A satisfies

Ȧi + αiAi = Sλ(J ·A+ I)i, i = 1, . . . , p.

Similarly to the voltage case, let us consider the p finite dimensional subspaces Fi, i = 1, . . . , p,
of G, where each Fi is generated by the N elements Y i

k , k = 1, . . . , N . We decompose G as
the direct sum of Fi and its orthogonal complement for 〈, 〉2 F⊥

i , G = Fi ⊕ F⊥
i and write

Ai = A
‖
i + A⊥

i . We denote
∏‖

i (respectively,
∏⊥

i ) the projection from G to Fi (respectively,
to F⊥

i ) parallel to F⊥
i (respectively, to Fi). This induces a decomposition of F as the direct

sum of F =
∏p

i=1 Fi and F⊥ =
∏p

i=1 F
⊥
i such that for each vector A of F we can write

A = A‖ +A⊥. By construction we also have

J ·A⊥ = 0,
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and therefore {
Ȧ

‖
i + αiA

‖
i =
∏‖

i Sλ(J ·A‖ + I)i,

Ȧ⊥
i + αiA

⊥
i =

∏⊥
i Sλ(J ·AF + I)i,

i = 1, . . . , p,

which is a 2p-dimensional nonautonomous system of ODEs:{
Ȧ‖ + La ·A‖ =

∏‖ Sλ(J ·A‖ + I),

Ȧ⊥ + La ·A⊥ =
∏⊥ Sλ(J ·A‖ + I),

where
∏‖ A = (

∏‖
i Ai)i=1,...,p and

∏⊥A = (
∏⊥

i Ai)i=1,...,p are the projections of A on
F and F⊥.

The first equation is a p-dimensional autonomous system of ODEs, which can be solved
before solving the second one.

D.1. Lemmas.
Lemma D.1. For all x, λ ∈ R we have

(S(λx)− S(0))2 ≤ S(λ2x2)− S(0).

Proof. We set X = λx and consider two cases.
X > 1. We have e−X > e−X2

and therefore S(X)− 1/2 < S(X2)− 1/2. Moreover, since
S(X)− 1/2 < 1, (S(X) − 1/2)2 < S(X) − 1/2, and we are done.

0 < X < 1. We let X = log y, 1 < y < e. We therefore have

S(X) − 1/2 =
1

2

y − 1

y + 1
, S(X2)− 1/2 =

1

2

ylog y − 1

ylog y + 1
.

We consider the expression (y − 1)2(ylog y + 1)− 2(y + 1)2(ylog y − 1) and prove it is negative.
Because ylog y < y it is upperbounded by (y − 1)2(ylog y + 1)− 2(ylog y + 1)2(ylog y − 1) which
has the sign of (y − 1)2 − 2(y2 log y − 1). The last expression is upperbounded by (y − 1)2 −
2(ylog y − 1) = (eX − 1)2 − 2(eX

2 − 1) which is negative for 0 < X < 1.
Proposition D.2. The solutions of (2.10) satisfy the following inequalities for all λ ≥ 0:∥∥∥Vf

λ

∥∥∥
F
≤
√

p|Ω| ‖J‖F + ‖Iext‖F def
= B1,

∥∥∥Vf
λ −Vf

0

∥∥∥
F
≤ 1

2

√
p|Ω| ‖J‖F

def
= B2,

and ∥∥∥Vf
λ −Vf

0

∥∥∥
F
≤ λ

4
‖J‖F B1.

Proof. The first inequality is a straightforward consequence of (2.10), taking the F-norm
and using the fact that 0 ≤ S(x) ≤ 1 for all x ∈ R (http://fidji.inria.fr/biblio). For the second

one we write Vf
λ−Vf

0 = J·(S(λVf
λ)−S(0)), take the F-norm of both sides of the equality, and

use the Cauchy–Schwarz inequality. We find ‖Vf
λ −Vf

0‖F ≤ ‖J‖F · ‖S(λVf
λ)− S(0)‖L2(Ω,Rp).

But since for all x ∈ R, −1
2 ≤ S(x) − S(0) ≤ 1

2 , we have ‖S(Vf
λ) − S(0)‖L2(Ω,Rp) ≤ 1

2

√
p|Ω|,

which proves the first inequality.

http://fidji.inria.fr/biblio
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The third inequality can be obtained as follows. It is easy to see that S(λx)−S(0) ≤ λ
4 |x|

for all x ∈ R and all λ ≥ 0. This implies that ‖S(Vf
λ)− S(0)‖ ≤ λ

4‖Vf
λ‖. The first inequality

yields the third.

Appendix E. An equality for the adjoint operator. We prove Proposition 3.2.

Proof. We prove the proposition in the case m = p = 1. By the definition of J∗
F we have

〈U,J∗
F ·V〉F = 〈J ·U,V〉F ∀U, V ∈ F .

We denote X = J∗
F ·V and rewrite the previous equation as

〈U,X〉2 + 〈∇U,∇X〉2 = 〈J ·U,V〉F .

We next rewrite the right-hand side

〈J ·U,V〉F = 〈J ·U,V〉2 + 〈∇ (J ·U) ,∇V〉2 .

The crucial step is to observe that

〈∇ (J ·U) ,∇V〉2 = 〈U, (∇1J)
∗
2 · ∇V〉2 ,

where ∇1 indicates the derivative with respect to the first variable, i.e.,

(∇1J)
∗
2 · ∇V(r) =

d∑
i=1

∫
Ω

∂J

∂r′i
(r′, r)

∂V

∂r′i
(r′) dr′.

Let us fix V in F . X is the solution of

〈U,X〉2 + 〈∇U,∇X〉2 = 〈U, f〉2 ∀U ∈ F .

Hence X is the unique weak solution in F of the homogeneous Neumann problem{ −ΔX+X = f on Ω,
∂X
∂ν = 0 on ∂Ω,

and f is the element of L2(Ω) defined by

f = J∗
2 ·V+ (∇1J)

∗
2 · ∇V + .

The regularity properties of the solutions of elliptic equations [23, Chapter 6] imply that X is
in W2,2(Ω). Let us denote by D the differential operator, defined in W2,2(Ω) by

D = −Δ+ Id.

We now choose V = e∗F . This implies that X = λe∗F and hence
∂e∗F
∂ν = 0 in ∂Ω. Furthermore,

we have

λD · e∗F = J∗
2 · e∗F + (∇1J)

∗
2 · ∇e∗F .
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Green’s formula together with the condition
∂e∗F
∂ν = 0 show that

(∇1J)
∗
2 · ∇e∗F = −J∗

2 ·Δe∗F ,

and therefore we have

λD · e∗F = J∗
2 · (D · e∗F ),

which shows that D · e∗F is an eigenvector of J∗
2 associated with the eigenvalue λ. We can

choose e∗L2 and e∗F so that

D · e∗F = e∗L2 .

From Green’s formula

〈U, e∗F 〉F = 〈U,D · e∗F 〉2 −
∫
∂Ω

∂e∗F
∂ν

U dσ,

and the conclusion follows from the fact that D · e∗F = e∗L2 and
∂e∗F
∂ν = 0 on ∂Ω.

Appendix F. The size of the basin of attraction of a stable persistent state. In order
to get a rough estimate of the size of the basin of attraction of a stable stationary solution of
the neural field equations, we prove the following, general, lemma.

Lemma F.1. Let xf be a stable stationary solution of the finite dimensional dynamical
system ẋ = f(x) at which the Jacobian matrix A is symmetric. If the second order derivative
D2f is bounded (

∥∥D2f
∥∥
∞ < ∞), the stable manifold of xf contains the open ball B(xf , R)

with R = 2min |σ(A)|
‖D2f‖∞ , where σ(A) is the spectrum of the Jacobian matrix A.

Proof. We assume without loss of generality that xf = 0. We write A = Df(0) and

f(x) = Ax + ε(x); then it is known, and easy to verify, that L(x) =
∫∞
0

∥∥esAx∥∥2 ds is a
Lyapunov function. Moreover, because of the Taylor formula without remainder we have

ε(x) =

(∫ 1

0
(1− s)D2f(sx) ds

)
· (x, x),

from which we deduce that

‖ε(x)‖ ≤ 1

2
‖x‖2 ∥∥D2f

∥∥
∞ .

Let us compute

DL(x) · f(x) = DL(x) · (Ax+ ε(x)) = −‖x‖2 +DL(x) · ε(x).

Now DL(x) · h = − 〈A−1x, h
〉
, and since A is symmetric, we obtain that |DL(x) · h| ≤

1
min |σ(A)| ‖x‖ ‖h‖ and finally

DL(x) · f(x) ≤ ‖x‖2
(
−1 +

1

2

∥∥D2f
∥∥
∞

1

min |σ(A)| ‖x‖
)

< 0

if ‖x‖ < 2min |σA|
‖D2f‖∞ ≡ R.
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