
Journal of Mathematical Neuroscience  (2015) 5:11 
DOI 10.1186/s13408-015-0023-8

R E S E A R C H Open Access

On the Effects on Cortical Spontaneous Activity of the
Symmetries of the Network of Pinwheels in Visual
Area V1

Romain Veltz1 · Pascal Chossat1,2 ·
Olivier Faugeras1

Received: 31 October 2014 / Accepted: 5 May 2015 /
© 2015 Veltz et al. This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.

Abstract This paper challenges and extends earlier seminal work. We consider the
problem of describing mathematically the spontaneous activity of V1 by combin-
ing several important experimental observations including (1) the organization of the
visual cortex into a spatially periodic network of hypercolumns structured around
pinwheels, (2) the difference between short-range and long-range intracortical con-
nections, the first ones being rather isotropic and producing naturally doubly periodic
patterns by Turing mechanisms, the second one being patchy, and (3) the fact that
the Turing patterns spontaneously produced by the short-range connections and the
network of pinwheels have similar periods. By analyzing the PO maps, we are able to
classify all possible singular points (the pinwheels) as having symmetries described
by a small subset of the wallpaper groups. We then propose a description of the
spontaneous activity of V1 using a classical voltage-based neural field model that
features isotropic short-range connectivities modulated by non-isotropic long-range
connectivities. A key observation is that, with only short-range connections and be-
cause the problem has full translational invariance in this case, a spontaneous doubly
periodic pattern generates a 2-torus in a suitable functional space which persists as
a flow-invariant manifold under small perturbations, for example when turning on
the long-range connections. Through a complete analysis of the symmetries of the
resulting neural field equation and motivated by a numerical investigation of the bi-
furcations of their solutions, we conclude that the branches of solutions which are
stable over an extended range of parameters are those that correspond to patterns
with an hexagonal (or nearly hexagonal) symmetry. The question of which patterns
persist when turning on the long-range connections is answered by (1) analyzing
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the remaining symmetries on the perturbed torus and (2) combining this information
with the Poincaré–Hopf theorem. We have developed a numerical implementation
of the theory that has allowed us to produce the predicted patterns of activities, the
planforms. In particular we generalize the contoured and non-contoured planforms
predicted by previous authors.

Keywords Visual hallucinations · Invariant torus · Poincaré–Hopf

1 Introduction

The primary area (V1) of the visual cortex is one of the first locations targeted by
connections from the thalamus which relays (and processes) inputs from the retina.
In some mammals like primates, cats or ferrets (see [1, 2, 3]), this cortical area is very
precisely organized in modules, called cortical hypercolumns, which process visual
attributes (like local orientation, spatial frequency) of different points in the visual
field. Note that there is almost no experimental evidence of hypercolumns from his-
tology (see [4]). Most of our knowledge derives from functional evidence, i.e. when
an external stimulus is applied. In this work, we focus on the processing of the local
orientation of visual stimuli which is reflected by the ability of some neurons to fire
only when a drifting grating of specific (called preferred) orientation is presented in
their receptive field. The distribution, on the cortical sheet, of the preferred orientation
of these particular neurons (see [5, 6]) defines a Preferred Orientation map (hereafter
called the PO map) which has a near lattice structure and which is continuous except
at particular points called pinwheels.

It has been argued by several authors (Ermentrout [7], Bressloff and Cowan [8, 9])
that V1 is to some extent structured like a crystal: it can be approximated by a plane
where the pinwheels are arranged in a doubly periodic lattice and the main features of
cortical activity in V1 can be interpreted in this framework. This idealization naturally
introduces symmetries in the problem, which makes deeper analysis accessible. As
long as the pinwheels are nearly arranged on a periodic lattice we can expect that the
main conclusions of our analysis will remain valid.

There is also experimental evidence (see below) that the spatial distribution of
connections emanating from one neuron in V1 differs according to whether the
connections are local (within one hypercolumn) or long-range (between different
hypercolumns). Local connections are considered to be isotropic. In the absence
of long-range connections the network (or field) of local connections would be
Euclidean-invariant, that is, invariant under rigid displacements and reflections in the
plane, a property that is transmitted to the model equations [7]. On the other hand,
long-range connections are subject to the constraint of respecting the symmetries
of the PO map, thereby reducing the full Euclidean group symmetries to a crystal-
lographic subgroup associated with the lattice of pinwheels. Moreover, experimen-
tal observations suggest that the strength of long-range connections is significantly
weaker than that of local connections, which allows for treating the long-range con-
nections as a perturbation of the local ones.

However, as shown initially by Ermentrout and Cowan [7], spontaneous activity
of V1 without long-range connections also produces naturally doubly periodic steady
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patterns by the Turing mechanism [10]. This fact has been at the origin of a series of
papers where hallucinatory patterns (seen by patients under the influence of drugs or
other stimuli of the visual cortex which are not coming from the thalamus) have been
explained as Turing patterns bifurcating in V1 [8, 11]. It was assumed in these papers
that the lattice of pinwheels can be itself approximated as a continuum in the plane,
that is, every point in the plane is a pinwheel. Then the full system of connections,
local and long-range, keeps translation invariance: any planar translation applied to
a pattern yields another one, up to periodicity. Therefore a pattern is not an isolated
solution but rather generates a manifold of solutions under the action of translations,
which is called an orbit under the action of the group of translations. This orbit,
thanks to the periodicity of the pattern, can be identified with a 2-torus in a suitable
functional space. Moreover, as long as this torus is a normally hyperbolic manifold
(it means here that steady-state patterns are hyperbolic along directions transversal to
the orbit), it persists as a flow-invariant manifold under small perturbations.

When the lattice of pinwheels is discrete, long-range connections reduce the trans-
lation group R

2 to a discrete subgroup isomorphic to Z
2. Our aim in this paper is to

study the effect of switching on such long-range connections on the tori of solutions
of the system with local connections only. As in the above cited papers we assume
that the strength of long-range connections is small compared to that of local connec-
tions. The introduction of the long-range connections destroys part of the symmetries
but not all of them. The perturbed torus features these remaining symmetries. We
classify possible dynamics on this invariant manifold by applying topological meth-
ods (the Poincaré–Hopf theorem) together with the symmetries. Numerical (direct)
simulations of the equations then allow one to determine which phase portrait is ac-
tually observed among those which have been theoretically identified.

Our motivation for this work is to understand how introducing a discrete lattice
of pinwheels would modify the states and dynamics of spontaneous activity in V1,
and we expect this could have some consequences on the theory of hallucinations of
Bressloff and Golubitsky et al. in [8].

The problem of the effect of long-range connections with discrete translation in-
variance on the Turing patterns which bifurcate when these connections are inactive
has been addressed by Bressloff [12] (see also Baker and Cowan [13]) in the follow-
ing context. These authors assumed that the periods of the patterns and of the lattice of
pinwheels were not correlated. An analysis inspired by methods initially introduced
for hydrodynamical systems allowed them to build Ginzburg–Landau equations, in
order to describe the slow modulation of the bifurcating patterns under the effect of
spatial periodic forcing due to the long-range connections.

There are, however, some experimental observations which suggest that in fact,
due to synaptic plasticity, the periods of the pinwheel lattice and of the Turing pat-
terns are close to each other [14, 15]. It is therefore not unrealistic to assume that
these periods are in fact equal, which we do in this study. Our approach differs on
another point: we do not assume the system to be close to bifurcation from homoge-
neous state. Therefore the validity range of our results goes well beyond bifurcation
analysis, and allows a rigorous mathematical treatment in the spirit of Lauterbach
and Roberts [16] about forced symmetry breaking of group orbits of equilibria with
spherical symmetry.
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The way in which neurons in V1 acquire orientation selectivity is still controversial
as the connections from the thalamus provide a very small percentage of the inputs:
95 % of these inputs are made of recurrent connections, i.e. intracortical connections
(see [17]). Despite this experimental evidence there are still two extreme attitudes to
account for these facts: either we assume that the recurrent connections provide much
of the input to each neuron, or that each neuron mostly follows the thalamic input,
discarding the recurrent connections; see [18]. Our approach lies in between.

We use the following standard neural field representation for the neural activity V

of the neuron located at x in the connected domain Ω of R2 representing V1:

d

dt
V (x, t) = −V (x, t) +

∫
Ω

J(x,y)S
(
V (y, t)

)
dy + Ithalamus(x, t),

S(x) = 1

1 + e−σx+T
, (1)

where S is the sigmoidal function with range (0,1) and T/σ is the threshold. The
slope is σ at x = T/σ . The domain Ω is usually taken as the infinite plane. This is not
an unrealistic approximation in the analysis, because the number of pinwheels in V1
is rather large, typically several thousands [8]. However, in numerical computations
one has to choose a bounded domain and the simplest choice is a square with periodic
boundary conditions: opposite sides are identified.

The connectivity function J represents the intracortical connections between neu-
rons and Ithalamus the thalamic input. Following [12], we decompose the connectivity
function as follows:

J (x,y) = Jloc(x,y) + εLRJLR(x,y), εLR � 1, (2)

where Jloc models the local connections and JLR(x,y) models the long-range con-
nections. The small factor εLR in front of JLR accounts for the fact mentioned above
that the strength of the long-range connections is significantly weaker than that of the
short-range connections [19]. From [4, 15] we can assume that the local connections
are isotropic (rotation invariant), and we further assume for simplicity that they are
also homogeneous (translation invariant). Hence Jloc only depends on the distance
between x and y:

Jloc(x,y) = Jloc
(‖x − y‖).

‖x − y‖ is the usual Euclidean norm in R
2. The form of the function JLR is discussed

in Sect. 3.1. The external (thalamic) input function Ithalamus will be assumed equal
to 0 throughout the paper in order to consider spontaneous activity only.

Remark 1 For all numerical experiments, we choose

Jloc(x) = ae
− ‖x‖2

2σ2
loc − e

− ‖x‖2

4σ2
loc . (3)

Indeed, from [4, 15], we know that the local connectivity is homogeneous in the cat
and in the monkey. Note that we assume that the excitatory (respectively, inhibitory)
connections are modeled as Gaussian with width σloc (respectively, 2σloc) [15]. The
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Fig. 1 Bifurcation diagrams of (1) w.r.t. the slope parameter σ , when Ithalamus = 0 and J (x,y) is a differ-
ence of Gaussians on a square (above) or hexagonal (bottom) domain with periodic boundary conditions.
The vertical axis is the norm of the sigmoid of the stationary solution. Black lines correspond to unstable
solutions and brown lines to stable ones. Each bifurcated solution yields a torus of identical steady states
up to translations. Red dots are additional bifurcation points where the bifurcated branches have not been
computed. The connectivity is tuned such that the first bifurcation point for the nonlinear gain σ is a su-
percritical D4-pitchfork (respectively, D6-pitchfork) bifurcation with wave-vector ‖k‖ = 1 for which the
spots are stable, while the stripes are not. The size of the square cortex is 8 × 2π and the numerical mesh
size is 10242 (top) and 3 × 5122 (bottom), the threshold is T = 0.1 and σloc = π · 0.395. We only used
the 15 eigenvalues with the largest real parts to find the bifurcation points. See Appendix B for details
concerning the numerical methods

constant a = 4e−σ 2
loc/2 is tuned such that the first bifurcation of the homogeneous state

has a wave-vector of norm 1; see [20] for more details and for bifurcation diagrams.
σloc controls the stability of stripes vs. spots.

Let us have a look at the bifurcation diagram in Fig. 1, top. It shows bifurcated pat-
terns in a square Ω with periodic boundary conditions when only local connections
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are turned on. The bifurcation parameter in abscissa is the slope σ of the sigmoid
function S. It shows, as expected, two primary bifurcated branches: one of stripes
and one of “spots”, which correspond to a periodic pattern with square symmetry.
Near bifurcation other types of solutions branch off these primary branches. Observe
that the stripes are always unstable and that the spots are stable in a small interval,
up to the first secondary bifurcation. On the other hand two secondary branches of
doubly periodic states bifurcate sub-critically and recover stability after bending back
in the increasing σ direction. These states are then stable on large intervals of val-
ues of σ . In their stability domain they look pretty much like hexagonal patterns. In
fact, they approximate the exact hexagonal patterns that would bifurcate on a domain
with hexagonal symmetry (and periodic boundary conditions). If the size of Ω is in-
creased, these two branches come closer to each other and bifurcate closer from the
primary bifurcation point. In the limit of a domain with infinite size, they merge into
one branch, which bifurcates at the same point as the spots and stripes, and they cor-
respond exactly to the hexagonal patterns which are well known from Turing theory
of pattern formation. We compare this diagram to the case where the domain Ω is an
hexagon with periodic boundary conditions; see Fig. 1, bottom. We were able to find
numerically the branches of spots (transcritical) and stripes (pitchfork). We did not
compute the secondary branches because our point was to show that the hexagons
(spots) are stable over an extended region.

Since we are interested in stable states, we can consider in the analysis, instead
of these “imperfect hexagons”, the exact hexagonal patterns that will show up in an
hexagonal lattice. This will make the analysis simpler and richer at the same time, and
the results will still be relevant for the secondary “approximate” hexagonal patterns
observed in Fig. 1, top. Despite the fact that square patterns (spots in Fig. 1, top)
are stable only in a small region near bifurcation, we shall discuss both square and
hexagonal patterns for completeness.

Our primary motivation here is to understand how the long-range connections with
discrete lattice symmetry affect the dynamics of the network. This is made possible
by using the fact that these connections act as a perturbation [19] of the dynamics
generated by the local connections. Looking at the spontaneous activity, i.e. without
thalamic input, is motivated by two reasons. The first reason is that it has been ar-
gued that the hallucinating patterns generated by some drugs can be explained by the
spontaneous activity of networks [7, 8] similar to the one studied here. The second
reason is that if we were to include an input with amplitude ε that we vary, it would
be the same as working with a fixed amplitude but varying the slope of the sigmoid
function S [21]. Hence, looking at the case of a thalamic input can be thought of as a
deformation of the case considered here.

The paper is organized as follows. We first describe in Sect. 2 the Turing pat-
terns that appear when the long-range connections are switched off. In Sect. 3 we
compute the network symmetries that are induced by the long-range connections. We
then study in Sect. 4 the perturbation of the Turing patterns, before drawing some
conclusions in Sect. 5.
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2 Turing Patterns in the Unperturbed Case

In this section, we formulate our assumptions on the symmetries of the unperturbed
solutions,1 written V0(x), that will be analyzed upon switching on the long-range con-
nections. Since the computation of Turing patterns has been extensively documented
in the literature (see for example [22, 23] for a review and [7] for neural fields), we
will not cover it here and only briefly recall the main results. We have seen in the
introduction that, when εLR = 0, the system is invariant under any translation in the
periodic domain Ω . Adjusting Ω to be a square or an hexagon, branches of steady
patterns with square or hexagonal symmetry bifurcate from the homogeneous state
as the slope σ of the sigmoid function S reaches a threshold value. These patterns are
stable in some range of values of σ as shown in Fig. 1. Stability here means “orbital
stability”. Indeed any translation applied to such a state V0 gives another solution,
thanks to the translational invariance. The group of translations acting in Ω (which
has periodic boundaries) is the torus R2/Z2, which, moreover, acts faithfully on any
V0 with square or hexagonal pattern. Therefore the set (called translation group orbit)
of translated states from V0 is a torus manifold. Moreover, this torus is an attractor if
V0 is orbitally stable.

A central hypothesis of the current study is the assumption that the spatial period
of V0 matches the spatial period of the PO map. The experimental data that support
this assumption were already mentioned in the introduction. For example, we will
not study the approximate “hexagonal” patterns (in the square cortex as in Fig. 1)
because they do not satisfy our assumption. Also, the stripes2 patterns will not be
studied here. Indeed, they have less symmetries and their study would only require
minor modifications of the present argument.

3 Network Symmetries

For reasons which have been explained in the introduction we are interested in the
perturbation of Turing patterns with square or hexagonal symmetries. Such patterns
have maximal lattice symmetry, meaning that they are invariant under the dihedral
group of rotations/reflections Dk with k = 4 (squares) or 6 (hexagons), and of course
they are invariant under the discrete translations which define the lattice group. It is
therefore convenient to suppose that the domain Ω representing the primary visual
cortex is a square or a hexagon with periodic boundary conditions (opposite sides are
identified). Let e1, e2 be two vectors generating the lattice and Ω0 be a fundamental
domain centered at the origin O of Ω (see Fig. 2). We choose e1 and e2 as unit
vectors, making an angle of π/2 in the square case, and of π/3 in the hexagonal case.
Then

Ω0 =
{
O + x1e1 + x2e2

∣∣∣ −�

2
≤ xi <

�

2
, i = 1,2

}
,

1In effect, doubly periodic solutions.
2They satisfy our assumption.
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Fig. 2 The two pinwheel lattices considered in this work in the square case (a) and in the hexagonal
case (b). The black lines show the elementary domains (the hypercolumns), the white lines the fundamental
domains Ω0 (see text). The clockwise (respectively, counterclockwise) pinwheels are represented with
black (respectively, white) dots. The vectors 2πe1 and 2πe2 are shown in white

� being an arbitrary length scale. By construction there exists an integer N such that,
by periodicity,

Ω � {Ω0 + j1e1 + j2e2 | j1, j2 = −N, . . . ,N}.
There are (2N + 1)2 copies of Ω0 in Ω . We further assume for convenience that
� = 2π . The number N will be adjusted to match the number of elementary cells
produced in Ω by the bifurcation of patterns when only local connections are ac-
tive. The largest group of isometries leaving the lattice spanned by Ω0 invariant is
Dk � Z

2
2N (k = 4 in the square lattice case and k = 6 in the hexagonal lattice case).

Let us now describe how the pinwheels are distributed in Ω . Pinwheels are the sin-
gular points of the PO map at which no orientation is preferred. Together with the
orientation map they introduce an anisotropy in the lattice, reducing the symmetry
group Dk �Z

2
2N of the lattice to a crystallographic subgroup (see [24, 25], which is

called, in the two-dimensional case, a wallpaper group.3 See [27] for a description
of these groups and for the shortened crystallographic notation, which is used in the
following. It is well known that there are 17 such groups, up to isomorphism, see
Fig. 3 for an illustration of these groups and the corresponding tilings.

However, there are restrictions on the number of possible patterns of pinwheels.
First, we only consider square and hexagonal lattices. Second, in order to be bio-
logically plausible the patterns built from the orientation map must be continuous
except at the pinwheels. We have determined by inspection that over all possibilities,
only those five patterns highlighted in Fig. 3 are compatible with these constraints.
Among those five we have selected the two which are shown in Fig. 2, i.e. pmm and
p3m1, because they best agree with the experimental data. Pinwheels are the points
(black/white dots in the pictures) at which all colors meet. Each color in Fig. 2 defines
an orientation, which we identify with an angle between −π/2 and π/2. In the case
(a) of Fig. 2 the tiling is invariant by reflection across the thick black lines (which
also give invariance by rotations of angle π around their intersection points). In the

3In our case we could use the equivalent notion of color group [26].



Journal of Mathematical Neuroscience  (2015) 5:11 Page 9 of 28

Fig. 3 The 17 planar tilings. Each elementary cell represents an hypercolumn with a pinwheel at its center.
The colored edges represent a coarse preferred orientation domain. The names of the five biologically
plausible tilings are highlighted in red and a more accurate representation is shown on the right. The
names of the tilings (and the associated wallpaper groups) are the shortened crystallographic notations;
see [27]. pmm, cmm, and p3m1 are those that best agree with the experimental data

case (b) the thick black lines are also axes of reflection. Observe that this gives 3-fold
rotational symmetries around their points of intersection. The corresponding group is
named p3m1. In the following we shall refer to these two PO maps by the names of
the associated wallpaper groups.
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Remark 2 We centered the hypercolumns around the pinwheels and used a uniform
preferred orientation density such that the proportion of neurons coding for each ori-
entation is the same for each orientation. This is done in order to avoid any preference
of the network for a particular orientation. Note that pinwheels come in pairs called
counterclockwise and clockwise: at a counterclockwise (respectively, clockwise) pin-
wheel, the orientation map shows increasing orientations when moving counterclock-
wise (respectively, clockwise) around it. Finally notice that the fundamental domain
is either centered at a pinwheel (Fig. 2(a)), or it is not (Fig. 2(b)).

To be rigorous the set of orientations should be identified with the projective line
P 1(R). We can further identify P 1(R) with the interval (−π

2 , π
2 ]. Let P be the set of

pinwheels in Ω , then the PO map is a map

θ : Ω \P →
(

−π

2
,
π

2

]
.

Note that P 1(R) is diffeomorphic to the circle S1 � (−π,π] mod 2π through the
map (−π

2 , π
2 ] � ϕ �→ 2ϕ. This allows one to naturally define an action of the circle

group S1 on P 1(R): if Rφ is the rotation of angle φ ∈ S1 around the origin, then
Rφ(ϕ) = ϕ +h(φ)/2 where h is a homomorphism of S1. From this, we can define an
action of S1 on the map θ as follows. Let φ0 = π/2 in the square case and φ0 = 2π/3
in the hexagonal case and let Rp

φ be the rotation of angle φ centered on a pinwheel p.
Then, with the PO maps of Fig. 2,

θ
(
Rp

φ0
x
) = θ(x) + ε

φ0

2
, (4)

where ε = 1 if the pinwheel is counterclockwise and −1 otherwise.
Similarly, let K be the reflection w.r.t. a line passing through a pinwheel and par-

allel to the vector e1 (horizontal axis). For the PO maps of Fig. 2,

θ(Kx) = −θ(x). (5)

This defines an action of the reflection K on the map θ . In order to transfer these
relations as (possible) symmetries of the network, we use the action of Dk �Z

2
2N on

L2(Ω,R):

(γ,V ) → (
x → γ · V (x) = V

(
γ −1x

))
.

This allows one to write (4) as (Rp
φ0

)−1 · θ = θ + ε
φ0
2 .

Remark 3 Note that we could add an arbitrary value θ0 ∈ (−π
2 , π

2 ] to the orientation
map and still obtain an orientation map. Except when θ0 = 0 or ±π/2, this would
have the effect of breaking the reflection symmetry of θ , because applying the new
reflection would not preserve the lattice. In the case of the tree shrew, the cortical
coordinates (here assumed to be equal to visual field coordinates) must be such that
the zero level of the PO map is parallel to the x1-axis, because of the anisotropy
of the long-range connections [28]. In this case, the reflection K acts indeed on the
network. On the other hand, for the macaque, any value of θ0 is relevant because
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the long-range connections are approximately isotropic [29]. Hence in this case the
assumption that K acts on the network is somewhat artificial. Nevertheless the pres-
ence of a reflection symmetry has strong consequences on the dynamics and we shall
subsequently consider both the reflection and the non-reflection cases.

We now draw an easy consequence of Eq. (4), which will play a major role in the
following analysis.

Lemma 3.1 Let αe1, α > 0, be the vector between two closest pinwheels of different
types in the direction e1. α is the smallest distance between them. Then (4) implies
that

Tt · θ(x) = θ(x − t) = θ(x) + φ0, t = α(e1 + e2). (6)

Proof Let us write Rpcc

φ0
(respectively, Rpc

φ0
) for the rotation of angle φ0 around

a counterclockwise (respectively, clockwise) pinwheel. According to (4) we have
(Rpcc

φ0
)−1 · Rpc

φ0
· θ = θ + φ0. From Lemma A.1 (Rpcc

φ0
)−1Rpc

φ0
x = x + t with t =

((Ro
φ0

)−1 − Id)(−αe1). This gives t = α(e1 + e2) and Tt · θ = θ + φ0. �

We have α = π in the square case and α = 2π/3 in the hexagonal case (cf. Fig. 2).

3.1 Model and Symmetries of the Long-Range Connections

In macaques, the anisotropy of horizontal connections follows from the anisotropy
of the visual field representation in V1, i.e. it is not correlated to a feature like orien-
tation [29]: the patchiness of the connections is hence isotropic. It seems reasonable
to assume that this patchiness comes from the connections between populations of
neurons which share similar preferred orientations [28]. Our long-range connectivity
model reads

JLR(x,y) = Gσθ

(
θ(x) − θ(y)

)
J0

(
χ,Ro

−2θ(x)(x − y)
)
, (7)

where J0(χ,x) = e−[(1−χ)2x2
1+x2

2 ]/2σ 2
LR . When χ = 0 the connectivity is isotropic,

while when χ = 1 it is “the most” anisotropic. Gσθ is a centered Gaussian4 with
variance σθ ≈ 35◦. It produces inhomogeneous patchy connections.

Remark 4 The following model of long-range connections was introduced by
Bressloff [12]:

J Bressloff
LR (x,y) = H

(
θ(x − y) − P0

)
J0

(
χ,Ro

2θ(x)(x − y)
)
, (8)

where H is the Heaviside step function and P0 is some constant. It differs mainly5

by the first factor, which enforces homogeneity of the connections. It is not clear to
us that this factor in (8) enforces connections between neurons with similar preferred

4It is periodic on (−π
2 , π

2 ]; see Appendix B.
5Note also the difference with (7) in the rotation term. The main reason for the − sign in this term in (7)
is to implement co-circularity [20].
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orientations. Establishing which one of the two factors proposed in (7) and (8) best
agrees with observations requires one to perform more experiments.

We now turn to the examination of the invariance properties of the long-range
connections with respect to the symmetries of the lattice of pinwheels and PO map.
It is important to emphasize that the symmetries of the long-range connections differ
from the symmetry groups pmm or p3m1 of the PO maps as we shall see below. The
function JLR is invariant under a transformation γ ∈ Dk � Z

2
2N if JLR(γ x, γ y) =

JLR(x,y) for all x, y. This implies that the equations are equivariant with respect
to the action defined in the previous section for the transformation γ . We consider
successively the cases of square and hexagonal lattices. However, there are some
general features which are shared by both types of networks and we start by stating
them.

Lemma 3.2 We have JLR(Rpcc

φ0
x,Rpcc

φ0
y) = JLR(x,y).

Proof From (4), the factor Gσθ (θ(x) − θ(y)) is clearly unaffected by the rotations.
Now thanks to (4) and the expression Rpcc

φ0
x = Ro

φ0
(x − pcc) + pcc,

J0
(
χ,Ro

−2θ(Rpcc
φ0

x)

(
Rpcc

φ0
x − Rpcc

φ0
y
)) (4)= J0

(
χ,Ro

−2θ(x)−φ0

(
Rpcc

φ0
x − Rpcc

φ0
y
))

= J0
(
χ,Ro

−2θ(x)−φ0
Ro

φ0
(x − y)

)

= J0
(
χ,Ro

−2θ(x)(x − y)
)
. �

Note that in the square case the above result still holds for ε = −1 because 2φ = π

in this case and J0 is an even function.

Lemma 3.3 Let K be the reflection across the horizontal axis. Assume that (5) holds.
Then JLR(Kx,Ky) = JLR(x,y).

Proof The factor Gσθ (θ(x)−θ(y)) is clearly unaffected by the reflection. Now thanks
to (5),

J0
(
χ,Ro

−2θ(Kx)K(x − y)
) = J0

(
χ,Ro

2θ(x)K(x − y)
) = J0

(
χ,KRo

−2θ(x)(x − y)
)

= J0
(
χ,Ro

−2θ(x)(x − y)
)
. �

Lemma 3.4 Let t be the vector as in Lemma 3.1. Let γ = T−1
t Rpc

φ0
. Then JLR(γ x,

γ y) = JLR(x,y).

Proof We can rewrite Lemma 3.1 as T−1
t ·θ = θ −φ0. Hence, we have γ ·θ = θ − φ0

2 .
We now look at the effect on the long-range connections. The factor Gσθ (θ(x)−θ(y))

is clearly unaffected by the transformation γ . Now, thanks to the previous relation:

J0
(
χ,Ro

−2θ(γ −1x)

(
γ −1x − γ −1y

)) = J0
(
χ,Ro

−2θ(γ −1x)

((
Rpc

φ0

)−1x − (
Rpc

φ0

)−1y
))

= J0
(
χ,Ro

−2θ(γ −1x)

(
Rpc

−φ0
x − Rpc

−φ0
y
))
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= J0
(
χ,Ro

−2θ(γ −1x)
Ro−φ0

(x − y)
)

= J0
(
χ,Ro

−2(θ(x)−φ0/2)−φ0
(x − y)

)

= J0
(
χ,Ro

−2θ(x)(x − y)
)
.

Applying γ to the previous equation gives the γ invariance. �

We will use these lemmas to derive the generators of the symmetry group in the
square and hexagonal cases. We will also compute the specific crystallographic group
that they generate.

3.1.1 The Square Case

We are now in a position to derive the symmetry group of the network equations. Note
that the case of the Bressloff connectivity (8) leads to a different symmetry group. We
start with the generators.

Proposition 3.5 We write Rpc

φ0
the rotation of angle π

2 centered on a clockwise pin-
wheel. For the (pmm) PO map in Fig. 2(a), the symmetry group associated with the
connectivity (7) in the case χ > 0, εLR �= 0 is:

1. Γ = 〈K,Rpc

φ0
,Tπ(e1+e2)〉 � (D4 � (Z/2NZ)2) if θ0 ∈ π

2 Z.

2. Γ = 〈Rpc

φ0
,Tπ(e1+e2)〉 � (C4 � (Z/2NZ)2) otherwise.

Finally, the subgroup of translation symmetries is the lattice

L
[
π(e1 + e2),π(e1 − e2)

]
.

Proof This is a direct consequences of the lemmas in the previous section. There
is, however, a simplification in the square case, namely the translation Tπ(e1+e2)

is a symmetry. Indeed, using Lemma 3.1, it is straightforward to show that
JLR(Tπ(e1+e2)x,Tπ(e1+e2)y) = JLR(x, y). Note that the translation Tπ(e1+e2) com-
mutes with T2πe1 and Rpc

φ0
. Finally, let us show that T2πe1 is generated by the

group elements listed in the lemma. Indeed, Tπ(e1−e2) = (Rpc

φ0
)−1Tπ(e1+e2) and

T2πe1 = Tπ(e1−e2) + Tπ(e1+e2).
To prove that the lattice of translations of the symmetry group is L[π

2 (e1 +
e2),

π
2 (e1 − e2)], we use the relation Rb(Ra)−1x = x + (Ro − Id)(a − b) (see

Lemma A.1) which is a translation. Using the rotations with axis a = 0 and b = πe1
allows one to conclude. �

The previous result gives the generators of the group. These groups are very well
known as crystallographic groups in the literature (see [24, 25, 27] for an introduc-
tion). More precisely, we find that the symmetry group Γ of the equations, in the case
χ, εLR �= 0, is the crystallographic group P4M if θ0 ∈ π

2 Z and P4 otherwise.
It is interesting to note that D2 is the point group associated to the pmm PO map,

whereas the point group of the network equations can be D4.
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3.1.2 The Hexagonal Case

The main difference with the square case is that the clockwise rotation is not a net-
work symmetry because of the anisotropic function J0 in (7) when χ > 0. Hence,
only half of the pinwheels are centers of rotation for the network equations (1),
namely the counterclockwise pinwheels. A direct consequence of the lemmas in the
previous section is the following.

Proposition 3.6 For the (p3m1) PO map in Fig. 2(b), the symmetry group Γ associ-
ated with the connectivity (7) in the case χ > 0, εLR �= 0 is:

1. Γ = 〈K,Rpcc

φ0
,T−1

2π
3 (e1+e2)

Rpc

φ0
,T2πe1〉 if θ0 ∈ π

2 Z.

2. Γ = 〈Rpcc

φ0
,T−1

2π
3 (e1+e2)

Rpc

φ0
,T2πe1〉 otherwise.

Finally, the subgroup of translation symmetries is the lattice L[2πe1,2πe2].

Proof The only thing left to prove is about the lattice of translations. We can look at
(see Lemma A.1) T−1

t Rpc (Rpcc )−1x = x + (Ro − Id)(pcc − pc) − t which is a trans-
lation where t ≡ 2π

3 (e1 + e2). When computed for pcc − pc ∈ { 2π
3 e1,− 2π

3 e2,− 4π
3 e1,

4π
3 e2}, we do not find a sub-lattice of translations different from L[2πe1,2πe2]. �

As for the square lattice, we can identify the group in the hexagonal case. The
symmetry group Γ of the equations, in the case χ, εLR �= 0, is the crystallographic
group p3m1 if θ0 ∈ π

2 Z and P3 otherwise.

4 Forced Symmetry Breaking of Patterns

We now study the perturbation of the torus of translated states from V0 when it is an
attractor. It is well known that in this case, a torus, flow-invariant manifold persists
when the equations are perturbed, as long as the perturbations are small (and smooth)
enough [30].

Our aim in this section is to determine how many steady-states do actually persist
when the system is perturbed by turning on long-range connections εLR �= 0, and
which phase portrait is observed on the perturbed torus.

Our method is as follows. We first analyze the remaining symmetries on the per-
turbed torus when εLR �= 0. This allows one to assert the persistence of some steady-
states (equilibria) which stand for points of maximal isotropy for the action of Γ on
the perturbed torus. Moreover, when these isotropy subgroups contain the m-fold ro-
tation group Cm with m ≥ 3, these equilibria are foci (attractive or repulsive) or nodes
(the case when the Jacobian matrix has a double real eigenvalue). Now, the topology
of the torus is an important constraint for the distribution of equilibria of saddle and
other types. This follows from the Poincaré–Hopf theorem, which can be found in an
abundance of literature and textbooks, and which can be stated as follows:

Theorem 4.1 Let V be a compact orientable surface and suppose that all equilibria
of a vector field defined on V are non-degenerate (i.e. hyperbolic: all eigenvalues of
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Jacobian matrices have non-zero real part). Let n be the number of equilibria on
V and p the number of those which are of saddle type (eigenvalues have opposite
signs). Then n − 2p = χ , the Euler characteristic of V .

In our case V is the torus, and hence χ = 0. Therefore there are an equal number
of equilibria of saddle type and of non-saddle type. These two pieces informations
(symmetries and Poincaré–Hopf theorem) greatly help to classify the possible phase
portraits on the torus. The idea of analyzing the dynamics on a group orbit of equi-
libria under symmetry-breaking perturbations was introduced by [16]. It was applied
in a theoretical setting to the case when the group orbit is a torus of square patterns
[31] or hexagonal patterns [32] with the aim of showing the existence of robust hete-
roclinic cycles under certain conditions. Our aim here is different and we only focus
on the cases which correspond to our model.

We next consider the square and hexagonal cases and we list the simplest possible
phase portraits, that is, with the minimal number of equilibria, assuming that these
are the pictures which will naturally arise in our model, unless further degeneracies
are assumed. Then direct numerical simulations of the dynamics on the perturbed
torus allow us to fix the actual dynamics which is induced on the invariant tori when
switching on the long-range connections. Then direct numerical simulations of the
dynamics on the perturbed torus allow us to select the dynamics, among the ones we
predicted, which is induced on the invariant tori when switching on the long-range
connections.

4.1 On the Perturbed Torus

As the perturbed torus TεLR is diffeomorphic to the unperturbed torus T0, we can
work in the coordinates of T0 for which the group action expression is known (see
below). In the numerical experiments, the diffeomorphism is not known and thus, as
we use T0 coordinates, the projection of the patterns on this coordinate system is only
approximative (see Fig. 4, for example).

Fig. 4 Example of dynamics for the PO map in Fig. 2(a) in the case where Γ = 〈Rs ,T0,2π 〉 and θ0 = 0.
Left: Sketch of the phase portrait in the fundamental domain. Right: Eight numerical trajectories of (1)
projected on the unperturbed torus T0. The fundamental domain is superimposed to compare with predic-
tion. The parameters are as follows: connectivity J

p,r
LR (x,y) (see Appendix B), εLR = 0.001, χ = 0.9, and

σ = 1.06264. The size of the cortex is 4 × 2π . The numerical mesh size is 10242
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To fix ideas, it is useful to be a bit more explicit. When εLR = 0, we write the
unperturbed torus as

T0 = {
V0(· − t), t ∈ Ω

} ⊂ L2
per(Ω,R),

where V0 is a stationary solution for εLR = 0. We assume that the torus solution is
invariant by rotation and reflection which is equivalent to assuming V0 invariant by
rotation and reflection. Under this assumption, the actions of rotations/reflections on
the torus satisfy (

Ro, t
) → Ro · t, (K, t) → K · t. (9)

This follows from RoTt · V0 = TRotV0. It implies that the action of a rotation Ra of
axis a is given by (

Ra, t
) → Ra · t.

In our model, the lattice of translations symmetries of the torus matches the one of
the PO map (see Sect. 2). Hence, V0 has the pinwheel periodicity:

V0(x + 2πke1 + 2πpe2) = V0(x), ∀x ∈ Ω,k,p ∈ Z. (10)

If we identify V0(·− t) and t, we can further simplify the study of the perturbed torus
by decomposing t as follows:

t = φ1e1 + φ2e2.

The assumption (10) implies that φi ∈ [0,2π).

Remark 5 We cannot apply directly our method to the branch of stripes in Fig. 1,
nor to the branch of hexagonal patterns, because the unperturbed torus generated by
these patterns is not invariant by rotations.

4.2 Square Case

Using the decomposition t = φ1e1 + φ2e2, one finds:
{

Ro · (φ1, φ2) = (−φ2, φ1),

K · (φ1, φ2) = (φ1,−φ2).
(11)

We collect the main results concerning the dynamics on the square in the following
proposition. It is the backbone for determining the possible phase portraits on the
perturbed torus.

Proposition 4.2 Let us assume that there is a finite number of equilibria on the per-
turbed torus which are all non-degenerate when εLR �= 0, χ ≥ 0. For the lattice pmm,
there are at least eight equilibria on the perturbed torus TεLR , four of which are sad-
dle, and the other four are nodes/foci. They are given by

Fix
(〈(

Ro)2〉) = {
(0,0), (0,π), (π,0), (π,π)

}
, (12)

which are centers of rotation.
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Proof It is easy to prove (12). Fixed point subspaces are flow invariant, this implies
that Fix(〈(Ro)2〉) is composed of stationary solutions. We also note that

Fix
(〈

Ro〉) = {
(0,0), (π,π)

}
.

We write d
dt

φ = F(φ) the dynamics on the torus. The equivariance implies that
dF(γ · φ)γ = γ · dF(φ). As φ ∈ Fix(〈Ro〉) is Γ -invariant, it implies that dF(φ)

commutes with the rotation (11). Simple linear algebra shows that dF(φ) must be a
rotation matrix, i.e. that Fix(〈Ro〉) is composed of nodes/foci. It remains to show that
this is also true for (0,π) and (π,0). This follows from Lemma 3.4 and

T−1
π(e1+e2)

Ro · (0,π) = (0,π).

As Ro and Tπ(e1+e2) commute, T−1
π(e1+e2)

Ro is of order 4, hence it is the rotation of

center (0,π). Now, we can see that the action of T−1
π(e1+e2)

Ro on the manifold T0 is

affine. Writing γ ≡ T−1
π(e1+e2)

Ro, the equivariance gives

dγ
(
F(0,π)

)
dF(0,π) = dF

(
γ (0,π)

)
dγ (0,π).

From γ being affine and (0,π) ∈ Fix(γ ), we find that dF(0,π) commute with
dγ = dRo seen as a map on the torus. This allows one to conclude that (0,π) is
a node/focus, and also (π,0). Being fixed points of rotations, the four nodes/foci are
center of rotation symmetry.

Assume now that there are a finite number of zeros (φi)i=1,...,n on TεLR which are
all non-degenerate. Thanks to Theorem 4.1

n∑
i=1

sign detdF(φi) = 0.

This gives

−4 =
∑

φi /∈Fix(R2
s )

sign detdF(φi),

which implies the existence of at least four saddles. �

A convenient way to find the foci is to look at the fundamental domain in Fig. 2(a).
These foci corresponds to the pinwheels in the fundamental domain.

We have seen that the minimal configuration, under the hypothesis that all equilib-
ria on the perturbed torus are hyperbolic, is that of eight equilibrium points with four
foci and four saddles. How does the associated phase portrait look like on the torus?
The answer crucially depends upon the presence of the reflection symmetry (case
when θ0 = 0). In this case the axes of reflection symmetry go through the equilibria.
Therefore the foci are necessarily of node type: the eigenvalues of the Jacobian are
double and real. The axes of reflection symmetry are invariant by the flow, which con-
strains the phase portrait to look like the one shown in Fig. 4. On the other hand when
there is no reflection symmetry the foci are typically “true” foci: the eigenvalues of
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Fig. 5 Example of dynamics for the PO map in Fig. 2(a) in the case where Γ = 〈Rs ,T0,2π 〉 and θ0 /∈ π
2 Z.

Left: Simplest dynamics found in this case shown in the fundamental domain. Right: Numerical solution of
(1) projected on the unperturbed torus T0. The fundamental domain is superimposed to compare with pre-

diction. The parameters are as follows: connectivity J
b,a
LR (x,y) (see Appendix B), εLR = 0.001, χ = 0.9,

and σ = 1.06264. The size of the cortex is 4 × 2π . The numerical mesh size is 10242

the Jacobian are complex conjugate. This allows for the possibility of periodic orbits
centered at such foci, as shown in Fig. 5. These two typical situations are observed
numerically, as shown on the right pictures in Figs. 4 and 5.

In order to observe limit cycles numerically, we had to change the connectivity.
Indeed, if we use the prefactor Gσθ = cos in (7), the imaginary part of the eigenvalues
of the equilibria coming from the breaking of the reflection symmetry by choosing
θ0 /∈ π

2 Z is tiny: at least 3 orders of magnitude smaller than the real part. In effect,
even if we break the reflection symmetry, we observe a dynamics similar to the one
in Fig. 4. To have larger imaginary parts, we connect neurons with opposite preferred
orientation by choosing the prefactor Gσθ = sin in (7). We further choose the con-
nectivity with largest imaginary part among connectivities in Appendix B. Note that
despite varying almost all parameters, we only observed the two situations as in Figs.
4 and 5 (up to a time reversal of the absence of limit cycles), as if naturally, the
network equations (1) produced the simplest possibilities for all parameters that we
investigated.

Remark 6 We would like to mention that great care was taken to code the equivari-
ance and that numerically, the error on symmetries was around 10−16 for the 2-norm
of an arbitrary vector of 2-norm around 37. The numerical errors on the equivariance
relations comes mainly from the PO map θ (see Eqs. (4)–(6)). Therefore, we com-
puted the PO map by first building its fundamental domain by rotating/reflecting a
basic cell and then padding this fundamental domain to cover Ω . This numerical ac-
curacy of the equivariance allows one to check the predicted values of the stationary
points with great accuracy using a Newton algorithm. In particular, we find numeri-
cally in Fig. 4 that the points (Ro)k · (π

2 ,0), k = 0, . . . ,3 are indeed saddle points.
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4.3 Hexagonal Case

We now consider the hexagonal lattice. This case is different from the square lattice
because it seems from Proposition 3.6 that only counterclockwise pinwheels are cen-
ter of rotations. However, it turns out that γ as in Lemma 3.4 is a rotation on the
torus, hence yielding the other pinwheels as center of rotations.

We prove the next proposition using a different method from the one used in the
proof of Proposition 4.2. Using a decomposition t = φ1e1 + φ2e2, one finds

Rp · t =
[

2p1 + p2 − φ1 − φ2
φ1 − p1 + p2

]
, p = p1e1 + p2e2.

Proposition 4.3 Let us assume that there is a finite number of equilibria on the per-
turbed torus which are all non-degenerate when εLR �= 0, χ ≥ 0. For the lattice
p3m1, there are at least 18 equilibria on the perturbed torus TεLR , nine of which
are saddle and the other nine are nodes/foci, given by the lattice L[ 2π

3 e1,
2π
3 e2]

which are centers of rotation. The subgroup of translation symmetries is the lattice
L[ 2π

3 (e1 + e2),
2π
3 (−e1 + 2e2)].

Proof In the fundamental domain, only counterclockwise pinwheels lead to a rota-
tional symmetry. The center of rotation is then a node/focus point. In particular, we
find the following node/foci points (see Sect. 3.1.2 for a definition)

(φ1, φ2) ∈
{(

4π

3
,0

)
,

(
2π

3
,

4π

3

)
,

(
0,

2π

3

)}
.

We now look at the symmetry γ ≡ T−1
2π
3 (e1+e2)

Rpc defined in Proposition 3.6, where

the axis of rotation is pc = 2π
3 (2e1 +e2). On the hexagonal torus, we find that γ = Ro,

which can be seen by writing the equations in the basis e1, e2. It yields Fix(γ ) =
(π

3 , π
3 )Z. Hence, these points are equilibria of node/foci type. It gives three additional

nodes/foci.
We can use these centers of rotation to rotate each node/foci in order to find other

equilibria. Using Lemma A.2, we have γ = Rv · Ro = (Ru)−1 where v = 2π
3 (e1 +

2e2) and u = 4π
3 e2. This yields the additional centers of rotations (hence node/foci):

(φ1, φ2) ∈
{(

2π

3
,0

)
,

(
0,

4π

3

)
,

(
4π

3
,

2π

3

)}
.

It follows that there are (at least) nine foci. Assuming that there is a finite number
of zeros on TεLR which are all non-degenerate, Theorem 4.1 implies that there are as
many saddles as foci.

We have shown that L[ 2π
3 e1,

2π
3 e2] is composed of centers of rotation. Using again

Lemma A.1 with a − b ∈ L[ 2π
3 e1,

2π
3 e2], we find that the subgroup of translation

symmetries is given by L[ 2π
3 (e1 + e2),

2π
3 (−e1 + 2e2)]. �

We take the opportunity to show how the different nodes/foci found in Proposi-
tion 3.6 can be interpreted in cortical coordinates, as shown in Fig. 6. Briefly, we add
the cortical activity as a semi-transparent overlay (transparent is when the cortical
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Fig. 6 Top: The hexagonal p3m1 PO map. Left column: two examples of cortical activations, as predicted
by Proposition 3.6, overlaid on the PO map. The pinwheels are shown in white. Right column: interpre-
tation of these activations in cortical coordinates, obtained by pooling the different activated orientations
around each pinwheel

activity is high) to the PO map θ . We then plot small edges or hexagonal patches
depending on which a subset of the hypercolumn is activated.

As in the square case, we can deduce from these results the possible phase portraits
when assuming that the equilibria on the perturbed torus are all hyperbolic and that
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Fig. 7 Sketch of the possible phase portraits on the perturbed torus. One case (left) is shown, assuming
that a periodic orbit surrounds the focus at the center. Another case (right) is shown in the case of reflection
symmetry. The presence or absence of periodic orbits is essentially related to the sign of the real part of
the eigenvalues of the Jacobian at the central focus

there are exactly 18 of them, nine foci and nine saddles. The situation is slightly more
complicated than in the square case, but it is not difficult to show that a typical phase
portrait looks like one of the diagrams shown in Fig. 7. It is numerically checked that
this “minimal” situation indeed occurs.

As in the square case, we had to use Gσθ = sin in order to see foci with non-
vanishing rotation number. Compared to the square case, we had more difficulty to
keep small enough errors in the equivariance relations. This numerical error is 3 or-
ders of magnitude bigger than for the square lattice6 and given that we need to nu-
merically solve (1) for a very long time, the errors of the symmetries seem to build
up. Nevertheless, we were still able to produce simulations, corresponding to one of
the possible diagrams (see Fig. 7). Except for the points ( 2π

3 , 2π
3 )Z, we find the sta-

tionary points predicted by Proposition 3.6 using a Newton algorithm. Around the
points ( 2π

3 , 2π
3 )Z, the Newton algorithm does not converge: this seems to be caused

by the presence of saddle points (also predicted in Proposition 3.6 which produces
the small kinks on the trajectories around the red points (see Fig. 8)).

In the numerical simulation displayed in Fig. 8, no periodic orbit was found. The
simulation seems to correspond to the predicted dynamics shown in Fig. 7, middle.
On the other hand, we observe the remarkable fact that the simulations also lead
to simplest possible scenarios with the smallest number of stationary points and a
periodic solution.

5 Discussion

In this work, we have extended the seminal and very influential work [8] on corti-
cal hallucinations after the original work of Ermentrout and Cowan [7]. Our idea is
to assume a discrete lattice of pinwheels (as opposed to a continuous one) and to
describe the cortical activity in the laminar zone which is located in between pin-
wheels. This is important, for example, if we want to confront our predictions to
optical imaging experiments. This approach has led us to shed some new light onto
two outstanding questions. First, what are the possible lattices of pinwheels? They

6It is in the order of 10−13.
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Fig. 8 Left: Example of solution on the unperturbed torus T0 obtained with a Newton algorithm. Right:
Numerical solution of (1) projected on the unperturbed torus T0. The green hexagon is the fundamental
domain from Proposition 4.3. The bottom right parallelogram is the result of six simulations, the hexagon
was built by tiling this parallelogram. The parameters are as follows: connectivity J

p,a
LR (x,y) (see Ap-

pendix B), εLR = 0.5, χ = 0.2, and σ = 1.11264. The size of the cortex is 8 × 2π . The numerical mesh
size is 3 · 10242

turn out to be closely related to the wallpaper groups. Second, what is the simplest
spontaneous dynamics generated by these networks? They turn out to be determined
by the perturbation of invariant tori.

The first question is natural but, to the best of our knowledge, has never been ad-
dressed theoretically, despite the fact that it allows one to apply the equivariant theory
of dynamical systems in a very similar way to [8] albeit in a more biologically plau-
sible setting. In [33] the authors describe a mechanism that allows them to describe
the probability of observing a network of pinwheels with a given density, but because
their equations are driven by white noise they lose all symmetries.

The second question is more subtle and in effect stems from numerical work where
we found it very difficult to implement the ideas of [8, 12], at least for a square cortex.
The computation of the bifurcation diagram in Fig. 1 led us to study the perturbation
of solutions that were not close to bifurcation points (see the brown lines in Fig. 1),
indeed this accounts for the most probable dynamics. As such, the bifurcation dia-
gram shown in Fig. 1 is an indication of the difficulty to apply the theory of cortical
hallucinations developed in [8] where it was assumed that such stereotyped cortical
patterns could be explained by adjusting the network parameters close to bifurca-
tions. Indeed, in such a setting, the validity of the theory shrinks rapidly with the size
of the cortex and, as far as we know, for all practical purposes it is difficult to use
it to account for observations. The problem is the same as in the work described in
[12], where the author studies the perturbation of a system close to a bifurcation with
a spatial forcing close to resonance. Secondary bifurcations might seriously restrict
the validity of the approach.

Let us examine the consequences of our investigations onto our current under-
standing of the functioning of V1.

The first consequence can be drawn from Fig. 1; the hexagonal case is the “only”
robust one from a modeling point of view. Indeed, even with the square lattice, the
branches which are stable over an extended range of parameters, have a near hexag-
onal symmetry. Hence, there is a mismatch between the solution approximate sym-
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Fig. 9 Left: Example of cortical activation added as a semi-transparent overlay to a pmm PO map. The
pinwheels are shown in white. Right: Interpretation of such activation in cortical coordinates made by
pooling the different activated orientations around each pinwheel

metry and the network symmetry, which is only resolved in the case of the hexagonal
pinwheel lattice.

The second consequence is that, within the class of pinwheel lattices that we con-
sider, those displaying the reflection symmetry are non-generic (see Sect. 3). This in-
duces the presence of foci and (possibly) limit cycles as described in Propositions 4.2
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and 4.3. However, the imaginary part of the eigenvalues at the foci is very small for
the excitatory long-range connections that are biologically plausible [28, 29] and this
makes the observation of limit cycles difficult.7 To increase the imaginary part in
simulations and observe limit cycles (see Fig. 5), we artificially use a connectivity
that connects neurons with orthogonal preferred orientations e.g. Gσθ = sin. This is
different from [8] where all bifurcated patterns are stationary. Note that [11] reports
time-periodic states in model similar to [8] but with additional symmetry.

The last consequence of our work is that it generalizes both theories described in
[7] and [8]. Indeed, the first theory allows the description of non-contoured cortical
spontaneous activations like in Fig. 9(a)–(b). The second theory generalizes the first
one by allowing the prediction of contoured patterns such as those in Fig. 9(c) as
well as the non-contoured ones. Our theory describes contoured and non-contoured
patterns as well as a mixture of such activation patterns as depicted in Fig. 6(c).

Our work can be extended in several ways. First, there is a need for a bifurcation
study of the dynamics on the torus w.r.t. the parameters εLR, χ , etc. Indeed, we have
not been very quantitative concerning the role of these parameters in shaping the dy-
namics. There are also lattices that have not been investigated (cmm, p4m and p6m
in Fig. 2) and it would be interesting to study the kind of planforms they can pro-
duce. We have not looked at the case where the stripes are stable in the D4-pitchfork.
That would be a minor modification of the present work but it would show another
type of planforms. More generally, we have not discussed the cases where the un-
perturbed solution is a circle rather than a torus. Hence, it is desirable to classify the
different planforms that can be produced from the unperturbed invariant manifolds
for the different lattices. Another extension concerns the study of cases where the
lattice of symmetry of the unperturbed torus T0 and the pinwheel lattice differ. The
perturbation from the long-range connections would act as a periodic forcing on the
unperturbed torus. Some models are available [12, 13], but we believe that they lack
an important component: synaptic plasticity. A relatively simple extension would be
to consider the effect of synaptic/propagation delays [34, 35]. Synaptic delays [36]
will not affect the unperturbed torus but are likely to increase the imaginary part of
the eigenvalues which we found to be nonzero albeit small when the reflection sym-
metry is broken. Other very exciting extensions concern the modeling of the spatial
frequency tuning and the ocular dominance domains. It would be very interesting to
re-visit some recent work on binocular rivalry [37, 38] in the light of the conclusions
presented in this paper.
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Appendix A: Useful Results

Lemma A.1 Composition of rotations Let Ra (respectively, Rb) be the rotation of
axis a (respectively, b). Let Ro be the rotation by the same angle through the origin.
Then

Rb(
Ra)−1x = x + (

Ro − Id
)
(a − b).

Proof Straightforward using Ra(x) = Ro(x − a) + a and (Ra)−1(x) = (Ro)−1(x −
a) + a. �

Lemma A.2 Let Rv
h the hexagonal rotation of angle 2π

3 and axis v acting on the
hexagonal torus. Then we have

Rv
h · Ro

h = (
Ru

h

)−1
, u = (v1 + v2,−v1).

Proof This is elementary algebra when writing the expression of the rotation in the
basis (e1, e2). �

Appendix B: Numerical Experiments

The bifurcation diagram shown in Fig. 1 was computed with the library Trilinos [40]
using the FFTw library to compute the FFT on the square lattice. The method imple-
ments a Newton–Krylov solver with GMRES linear solver, the eigensolver is based
on the Arnoldi algorithm. For the simulation of the full network, we follow [12] to
make the connectivity amenable to fast computations, e.g. using FFTs. Indeed, ne-
glecting Gσθ in (7), we find

JLR(x,y) =
3∑

k=1

Dk(x)Jk(x − y)J (x − y), (13)

where the mask J (x) = 1(‖x‖ < 3 · 2π) − 1(‖x‖ > 1 · 2π) allows one to select long-
range connections but no local connections. We use two different schemes, the one
from [12] (modified by multiplying the PO map θ by −1 to induce co-circular pre-
ferred connections) and another one found by Taylor expanding J0 in (7):

D
(b)
1 (x) = χ cos2 θ(x), D

(b)
2 (x) = 2χ cos θ(x) sin θ(x),

D
(b)
3 (x) = χ sin2 θ(x), J

(b)
1 (x) = x2

1J (x), (14)
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J
(b)
2 (x) = x1x2J (x), J

(b)
3 (x) = x2

2J (x),

D
(p)

1 (x) = cos2 θ(x), D
(p)

2 (x) = −2 cos θ(x) sin θ(x),

D
(p)

3 (x) = sin2 θ(x), J
(p)

1 (x) = (1 − χ)x2
1 + x2

2 , (15)

J
(p)

2 (x) = x1x2, J
(p)

3 (x) = x2
1 + (1 − χ)x2

2 .

In order to take into account the angular selection in Gσθ (θ(x) − θ(y)), which is
costly to compute, we use the first Fourier component of Gσθ , namely

J
(regular)
σθ (x,y) ≡ cos

(
θ(x) − θ(y)

) = cos
(
θ(x)

)
cos

(
θ(y)

) + sin
(
θ(x)

)
sin

(
θ(y)

)

or

J (anti)
σθ

(x,y) ≡ sin
(
θ(x) − θ(y)

) = sin
(
θ(x)

)
cos

(
θ(y)

) − cos
(
θ(x)

)
sin

(
θ(y)

)
.

We note that J
(regular)
σθ connects neurons with similar preferred orientation, whereas

J
(anti)
σθ connects neurons whose preferred orientations differ by ±π . The reason why

we introduce this last connectivity scheme is because it allows one to have eigenval-
ues of the Jacobian at fixed points with relatively large imaginary parts, which speeds
up the dynamics on the invariant torus. To sum up, we use the connectivity function

J num
LR (x,y) = Jσθ (x,y)JLR(x,y),

where JLR is given by (13). It is found that this function satisfies

J num
LR (x,y) =

6∑
k=1

D̃k(x)J̃k(x − y)Ck(y),

which is computationally very efficient. In the simulations, we use the following con-
nectivities:

J
b,r
LR (x,y) ≡ J

(regular)
σθ (x,y)

3∑
k=1

D
(b)
k (x)J

(b)
k (x − y)J (b)(x − y),

J
b,a
LR (x,y) ≡ J (anti)

σθ
(x,y)

3∑
k=1

D
(b)
k (x)J

(b)
k (x − y)J (b)(x − y), (16)

J
p,a
LR (x,y) ≡ J (anti)

σθ
(x,y)

3∑
k=1

D
(p)
k (x)J

(p)
k (x − y)J (p)(x − y).

In order to solve the differential equations (1) with a large number of unknowns,
we use PETSc [41] and its Python extension PETSc4py [42]. The linear solver in
this case is a deflated-GMRES combined with the BDF (backward differentiation
formulas) method suitable for stiff systems. The simulations for the square lattice
have 10242 unknowns, those for the hexagonal lattice have 3 · 10242.
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