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Abstract. — An index theory for projective families of elliptic pseudodifferential oper-
ators is developed under two conditions. First, that the twisting, i.e. Dixmier-Douady,
class is in H2(X; Z)∪H1(X; Z) ⊂ H3(X; Z) and secondly that the 2-class part is triv-
ialized on the total space of the fibration. One of the features of this special case
is that the corresponding Azumaya bundle can be refined to a bundle of smoothing
operators. The topological and the analytic index of a projective family of elliptic
operators associated with the smooth Azumaya bundle both take values in twisted
K-theory of the parameterizing space and the main result is the equality of these two
notions of index. The twisted Chern character of the index class is then computed by
a variant of Chern-Weil theory.

Résumé (L’indice des familles projectives d’opérateurs elliptiques: le cas décomposable)
Une théorie de l’indice pour des familles projectives d’opérateurs pseudodifféren-

tiels elliptiques est développée sous les deux conditions suivantes: la classe de Dixmier-
Douady est dans H2(X; Z) ∪ H1(X; Z) ⊂ H3(X; Z), et la partie de degré deux est
trivialisée sur l’espace total de la fibration. Le fibré d’Azumaya correspondant peut
alors être raffiné en un fibré d’opérateurs régularisants. Les indices topologiques et
analytiques d’une famille projective d’opérateurs elliptiques associée au fibré d’Azu-
maya lisse sont à valeurs dans la K-théorie tordue de la base de la famille et le résultat
principal est l’égalité de ces deux indices. Le caractère de Chern tordu de la famille
est calculé par une variante de la théorie de Chern-Weil.
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Introduction

The basic object leading to twisted K-theory for a space, X, can be taken to be
a principal PU-bundle P −→ X, where PU = U( H )/U(1) is the group of projective
unitary operators on some separable infinite-dimensional Hilbert space H . Circle bun-
dles over X are classified up to isomorphism by their Chern classes in H2(X; Z) and
analogously principal PU bundles are classified by H3(X; Z) with the element δ( P) be-
ing the Dixmier-Douady invariant of P. Just as K0(X), the ordinary K-theory group
of X, may be identified with the group of homotopy classes of maps X −→ F ( H )

into the Fredholm operators on H , the twisted K-theory group K0(X; P) may be
identified with the homotopy classes of sections of the bundle P ×PU F arising from
the conjugation action of PU on F . The action of PU on the compact operators, K ,
induces the Azumaya bundle, A. The K-theory, in the sense of C∗ algebras, of the
space of continuous sections of this bundle, written K0(X; A), is naturally identified
with K0(X; P). From an analytic viewpoint A is more convenient to deal with than
P itself.

In the case of circle bundles isomorphisms are classified up to homotopy by an
element of H1(X; Z), corresponding to the homotopy class of a smooth map X −→
U(1). Similarly, δ ∈ H3(X; Z) determines P up to isomorphism with the isomorphism
class determined up to homotopy by an element of H2(X; Z), corresponding to the
fact that PU is a K(Z, 2). The result is that K0(X; A) depends as a group on the
choice of Azumaya bundle with DD invariant δ up to an action of H2(X; Z).

In [20] we extended the index theorem for a family of elliptic operators, giving the
equality of the analytic and the topological index maps in K-theory, to the case of
twisted K-theory where the twisting class is a torsion element of H3(X; Z). In this
paper we prove a similar index equality in the case of twisted K-theory when the
index class is decomposable

(1) δ = α ∪ β, α ∈ H1(X; Z), β ∈ H2(X; Z),

and the fibration φ : Y −→ X is such that φ∗β = 0 in H2(Y ; Z).

Under the assumption (1), that the class δ is decomposed, we show below that there
is a choice of principal PU bundle with class δ such that the classifying map above,
cP : X −→ K(Z; 3) factors through U(1) × PU . Twisting by a homotopically non-
trivial map κ : X −→ PU does not preserve this property, so in this decomposed case
there is indeed a natural choice of smooth Azumaya bundle, S, up to homotopically
trivial isomorphism and this induces a choice of twisted K-group determined by the
decomposition of δ; we denote this well-defined twisted K-group by

(2) K0(X;α, β) = K0(X; A), A = S.

The effect on smoothness of the assumption of decomposability on the Dixmier-
Douady class can be appreciated by comparison with the simpler case of degree 2.
Thus, if α1 ∪ α2 ∈ H2(X; Z) is a decomposed class, αi ∈ H1(X; Z) for i = 1, 2, then
the associated line bundle is the pull-back of the Poincaré line bundle associated to
a polarization on the 2-torus under the map u1 × u2, where the ui ∈ C∞(X; U(1))
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represent the αi. This is to be contrasted with the general case in with the line bundle
is the pull-back from a classifying space such as PU, and is only unique up to twisting
by a smooth map κ′ : X −→ U(1).

The data we use to define a smooth Azumaya bundle is:

– A smooth function

(3) u ∈ C∞(X; U(1))

the homotopy class of which represents α ∈ H1(X,Z).

– A Hermitian line bundle (later with unitary connection)

(4) L

��
X

with Chern class β ∈ H2(X; Z).

– A smooth fiber bundle of compact manifolds

(5) Z Y

φ

��
X

such that φ∗β = 0 in H2(Y ; Z).

– An explicit global unitary trivialization

(6) γ : φ∗(L)
'−→ Y × C.

These hypotheses are satisfied by taking Y = L̃, the circle bundle of L, and then there
is a natural choice of γ in (6). This corresponds to the ‘natural’ smooth Azumaya
bundle associated to the given decomposition of δ = α ∪ β and we take K0(X;α, β)

in (2) to be defined by this Azumaya bundle, discussed as a warm-up exercise in
Section 1. In Appendix C it is observed that any fibration for which β is a multiple
of a degree 2 characteristic class of φ : Y −→ X satisfies the hypothesis in (5).

In general, the data (3) – (6) are shown below to determine an infinite rank ‘smooth
Azumaya bundle’, which we denote S(γ). This has fibres isomorphic to the algebra
of smoothing operators on the fibre, Z, of Y with Schwartz kernels consisting of the
smooth sections of a line bundle J(γ) over Z2. The completion of this algebra of
‘smoothing operators’ to a bundle with fibres modelled on the compact operators has
Dixmier-Douady invariant α ∪ β.

In outline the construction of S(γ) proceeds as follows; details may be found in
Section 3. The trivialization (6) induces a groupoid character Y [2] −→ U(1), where
Y [2] is the fiber product of two copies of fibration. Combined with the choice (3) this
gives a map from Y [2] into the torus and hence by pull-back the line bundle J = J(γ).

This line bundle is primitive in the sense that under lifting by the three projection
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maps

(7) L̃[3]

πS //
πC //
πF //

L̃[2]

(corresponding respectively to the left two, the outer two and the right two factors)
there is a natural isomorphism

(8) π∗SJ ⊗ π∗FJ = π∗CJ.

This is enough to give the space of global sections, C∞(Y [2]; J ⊗ ΩR), where ΩR is
the fiber-density bundle on the right factor, a fibrewise product isomorphic to the
smoothing operators on Z. Indeed, if z represents a fiber variable then

(9) A ◦B(x, z, z′) =

∫
Z

A(x, z, z′′) ·B(x, z′′, z′)

where · denotes the isomorphism (8) which gives the identification

(10) J(z,z′′) ⊗ J(z′′,z′) ' J(z,z′)

needed to interpret the integral in (9). The naturality of the isomorphism corresponds
to the associativity of this product.

Then the smooth Azumaya bundle is defined in terms of its space of global sections

(11) C∞(X; S(γ)) = C∞(Y [2]; J(γ)).

As remarked above, J(γ), and hence also the Azumaya bundle, depends on the par-
ticular global trivialization (6). Two trivializations, γi, i = 1, 2 as in (6) determine

(12) γ12 : Y −→ U(1), γ12(y)γ2(y) = γ1(y)

which fixes an element [γ12] ∈ H1(Y ; Z) and hence a line bundle K12 over Y with
Chern class [γ12] ∪ [φ∗α]. Then

(13) J(γ2) ' (K−1
12 �K12)⊗ J(γ1)

with the isomorphism consistent with primitivity.
Pulling back to Y, φ∗ A(γ) is trivialized as an Azumaya bundle and this trivializa-

tion induces an isomorphism of twisted and untwisted K-theory

(14) K0(Y ;φ∗ A(γ))
'−→ K0(Y ).

In fact there are stable isomorphisms between the different smooth Azumaya bundles
and these induce natural and consistent isomorphisms

(15) K0(X; A(γ))
'−→ K0(X;α, β).

The proof may be found in Section 4.
The transition maps for the local presentation of the smooth Azumaya bundle,

S(γ), determined by the data (3) – (6), are given by multiplication by smooth func-
tions. Thus they also preserve the corresponding spaces of differential, or pseudod-
ifferential, operators on the fibres; the corresponding algebras of twisted fibrewise
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pseudodifferential operators are therefore well defined. Moreover, since the princi-
pal symbol of a pseudodifferential operator is invariant under conjugation by (non-
vanishing) functions there is a well-defined symbol map from the pseudodifferential
extension of the Azumaya bundle, with values in the usual symbol space on T ∗(Y/X)

(so with no additional twisting). The trivialization of the Azumaya bundle over Y,
and hence over T ∗(Y/X), means that the class of an elliptic element can also be in-
terpreted as an element of K0

c(T ∗(Y/X); ρ∗φ∗ A(γ)) where ρ : T (Y/X) −→ Y is the
bundle projection. This leads to the analytic index map,

(16) inda : K0
c(T ∗(Y/X); ρ∗φ∗ A(γ)) −→ K0(X; A(γ)).

The topological index can be defined using the standard argument by embedding
of the fibration Y into the product fibration π : RN ×X −→ X for large N. Namely,
the Azumaya bundle is trivialized over Y and this trivialization extends naturally to
a fibred collar neighborhood Ω of Y embedded in RN×X. Thus, the usual Thom map
K0

c(T ∗(Y/X)) −→ K0
c(T ∗(Ω/X) is trivially lifted to a map for the twisted K-theory,

which then extends by excision to a map giving the topological index as the composite
with Bott periodicity:

(17) indt : K0
c(T ∗(Y/X); ρ∗φ∗ A(γ)) −→ K0

c(T ∗(Ω/X); ρ∗π̃∗ A(γ))

−→ K0
c(T ∗(RN/X); ρ∗π∗ A(γ)) −→ K0(X; A(γ)).

In the proof of the equality of these two index maps we pass through an inter-
mediate step using an index map given by semiclassical quantization of smoothing
operators, rather than standard pseudodifferential quantiztion. This has the virtue
of circumventing the usual problems with multiplicativity of the analytic index even
though it is somewhat less familiar. A fuller treatment of this semiclassical approach
can be found in [21] so only the novelties, such as they are, in the twisted case are
discussed here. The more conventional route, as used in [20], is still available but is
technically more demanding. In particular it is worth noting that the semiclassical
index map, as defined below, is well-defined even for a general fibration – without as-
suming that φ∗β = 0. Indeed, this is essential in the proof, since the product fibration
RN ×X does not have this property.

For a fixed fibration the index maps induced by two different trivializations γ may
be compared and induce a commutative diagram

(18) K0
c(T ∗(Y/X))

' //

[K12]×

��

K0
c(T ∗(Y/X); ρ∗φ∗ A(γ1))

ind(γ1)// K0(X; A(γ1))

'
��

K0(X;α, β)

K0
c(T ∗(Y/X))

' // K0
c(T ∗(Y/X); ρ∗φ∗ A(γ2))

ind(γ2)// K0(X; A(γ2)).

'

OO

This follows from the proof of the index theorem.
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