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Abstract. — For a class of Borcea–Voisin threefolds, we give an explicit formula for
the BCOV invariant [3], [14] as a function on the moduli space. For those Calabi–
Yau threefolds, the BCOV invariant is expressed as the Petersson norm of the tensor
product of a certain Borcherds lift on the Kähler moduli of a Del Pezzo surface and
the Dedekind η-function. As a by-product, we construct an automorphic form on
the orthogonal modular variety associated to the odd unimodular lattice of signature
(2,m), m ≤ 10, which vanishes exactly on the Heegner divisor of norm (−1)-vectors.

Résumé (Variétés de Calabi-Yau de dimension trois de type Borcea–Voisin, torsion analytique,
et produits de Borcherds)

Pour une classe de variétés de Borcea–Voisin, nous donnons une formule expli-
cite de l’invariant de BCOV [3], [14] comme une fonction sur l’espace de modules.
Pour ces variétés de Calabi–Yau de dimension trois, l’invariant de BCOV s’exprime
comme la norme du produit tensoriel d’un relèvement de Borcherds à l’espace des
modules kählériens d’une surface de Del Pezzo et de la fonction η de Dedekind. Nous
construisons une forme automorphe sur la variété modulaire orthogonale associée au
réseau unimodulaire impair de signature (2,m), m ≤ 10, qui s’annule exactement sur
le diviseur de Heegner des vecteurs de norme −1.

1. Introduction

In [33], Ray–Singer introduced the notion of analytic torsion for compact Kähler
manifolds. Their definition was extended to arbitrary holomorphic Hermitian vector
bundles over a compact Kähler manifold by Quillen [32] and Bismut–Gillet–Soulé
[7]. Let ξ → X be a holomorphic Hermitian vector bundle over a compact Kähler
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manifold and let ζq(s) be the spectral zeta function of the Hodge–Kodaira Laplacian
acting on the space of (0, q)-forms on X with values in ξ. Then the real number

τ(X, ξ) = exp[−
∑
q≥0

(−1)qq ζ ′q(0)]

is called the analytic torsion of ξ. The most fundamental results in the theory of
analytic torsion such as the first variational formula, the second variational formula
and the comparison formula for complex immersions were obtained by Bismut–Gillet–
Soulé and Bismut–Lebeau as the corresponding results in the theory of Quillen met-
rics, i.e., the anomaly formula, the curvature formula and the immersion formula for
Quillen metrics [7], [8],...

In [3], Bershadsky–Cecotti–Ooguri–Vafa introduced the following combination of
analytic torsions for a compact Kähler manifold X∏

p≥0

τ(X,ΩpX)(−1)pp,

which we call the BCOV torsion ofX. They studied the BCOV torsion as a function on
the moduli space of Calabi–Yau threefolds and used it to extend the mirror symmetry
conjecture to higher-genus Gromov–Witten invariants [2], [3].

In [14], the notion of BCOV invariant was introduced for Calabi–Yau threefolds
by Fang–Lu–Yoshikawa, which they obtained using the BCOV torsion and a certain
Bott–Chern secondary class. (See Sect. 5.1 for the definition.) The BCOV invariant of
a Calabi–Yau threefold X is denoted by τBCOV(X). Then τBCOV(X) depends only on
the isomorphism class of X, while the BCOV torsion does depend on the choice of a
Kähler metric on X. Because of this invariance property, the BCOV invariant τBCOV

gives rise to a function on the moduli space of Calabi–Yau threefolds and is identified
with the partition function F1 in [3]. In this paper, we give an explicit formula for
the BCOV invariant for a class of Calabi–Yau threefolds studied by Borcea [9] and
Voisin [36]. (See [14] for some other examples including the quintic mirror threefolds
and the FHSV models.) Let us explain our results.

Let S be a K3 surface and let θ : S → S be an anti-symplectic holomorphic in-
volution. Let T be an elliptic curve and let −1T : T → T be the involution defined
as −1T (x) = −x. Let X(S,θ,T ) be the blow-up of the orbifold (S × T )/θ × (−1)T
along the singular locus. Then X(S,θ,T ) is a smooth Calabi–Yau threefold equipped
with the following two fibrations. Let π1 : X(S,θ,T ) → S/θ be the elliptic fibration
with constant fiber T induced from the projection (S × T )/θ × (−1)T → S/θ and
let π2 : X(S,θ,T ) → T/(−1T ) be the K3-fibration with constant fiber S induced from
the projection (S × T )/θ × (−1)T → T/(−1T ). The triplet (X(S,θ,T ), π1, π2) is called
the Borcea–Voisin threefold associated with (S, θ, T ). The moduli space of the triplet
(X(S,θ,T ), π1, π2) is determined by the lattice H2

−(S,Z), the anti-invariant part of
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the θ-action on H2(S,Z). By [28], H2
−(S,Z) is isometric to a primitive 2-elementary

sublattice of the K3-lattice LK3. Let Λ ⊂ LK3 be a sublattice of rank r(Λ). A Borcea–
Voisin threefold (X(S,θ,T ), π1, π2) is of type Λ if H2

−(S,Z) is isometric to Λ. Since θ is
anti-symplectic, there exist Borcea–Voisin threefolds of type Λ if and only if Λ ⊂ LK3

is a primitive 2-elementary sublattice of signature (2, r(Λ)− 2).
Some Borcea–Voisin threefolds are related to Del Pezzo surfaces. Let V be a Del

Pezzo surface and set deg V = c1(V )2 ∈ Z>0. Let H(V,Z) be the total cohomol-
ogy group of V , which is equipped with the cup-product 〈·, ·〉V . Then the sublattice
H2(V,Z) ⊂ H(V,Z) is Lorentzian. Let H(V,Z)(2) be the lattice (H(V,Z), 2〈·, ·〉V ).
By the classification of primitive 2-elementary Lorentzian sublattices of LK3 [29],
there exist Borcea–Voisin threefolds of type H(V,Z)(2). Let us explain their moduli
space briefly.

Let KV ⊂ H2(V,R) be the Kähler cone of V , let C+
V ⊂ H2(V,R) be the component

of the positive cone of H2(V,R) with KV ⊂ C+
V and let Eff(V ) ⊂ H2(V,Z) be the

set of effective classes on V . The tube domain H2(V,R) + i C+
V is isomorphic to

a bounded symmetric domain of type IV and its subdomain H2(V,R) + i KV is
called the complexified Kähler cone of V . Let H be the complex upper half-plane.
By assigning (X(S,θ,T ), π1, π2) the periods of (S, θ) and T , the coarse moduli space of
Borcea–Voisin threefolds of type H(V,Z)(2) is isomorphic to the quotient of the tube
domain (H2(V,R)+ i C+

V )×H by the group O+(H(V,Z))×SL2(Z) with some divisor
removed (cf. Theorem 3.7), where O+(H(V,Z)) is the group of isometries of H(V,Z)

preserving H2(V,R) + i C+
V . Hence τBCOV is regarded as an O+(H(V,Z))× SL2(Z)-

invariant function on a certain Zariski open subset of (H2(V,R)+ i C+
V )×H. The goal

of this paper is to give an explicit formula for τBCOV as a function on (H2(V,R) +

i C+
V )×H for Borcea–Voisin threefolds of type H2(V,Z)(2). Let us explain the infinite

product appearing in the formula.
After Borcherds [12] and Gritsenko–Nikulin [16], we introduce the following infinite

product ΦV (z) on the complexified Kähler cone H2(V,R) + i KV :

ΦV (z) = eπi〈c1(V ),z〉V
∏

α∈Eff(V )

Ä
1− e2πi〈α,z〉V

äc(0)

deg V
(α2)

×
∏

β∈Eff(V ), β/2≡c1(V )/2 mod H2(V,Z)

Ä
1− eπi〈β,z〉V

äc(1)

deg V
(β2/4)

,

where c(0)
k (m) and c(1)

k (m) are the m-th Fourier coefficients of the modular forms

f
(0)
k (τ) = η(τ)−8η(2τ)8η(4τ)−8 θA+

1
(τ)k, f

(1)
k (τ) = −8 η(4τ)8η(2τ)−16 θA+

1 + 1
2
(τ)k,

respectively. Here η(τ) is the Dedekind η-function and θA+
1

(τ), θA+
1 +1/2(τ) are the

theta series of the A1-lattice. Let AH(V,Z)(2) be the discriminant group of the lat-
tice H(V,Z)(2) and let {eγ}γ∈AH(V,Z)(2)

be the standard basis of C[AH(V,Z)(2)], the
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group ring of AH(V,Z)(2). In Sects. 4.3, 4.4 and 6.2, we shall prove that ΦV (2z)2 is the
Borcherds lift [12] of the C[AH(V,Z)(2)]-valued elliptic modular form

f
(0)
deg V (τ) e0 +

∑
γ∈AH(V,Z)(2)

∑
m≡2γ2 mod 4

c
(0)
deg V (m) qm/4 eγ + f

(1)
deg V (τ) e1H(V,Z)(2)

with respect to the lattice H(V,Z)(2). Here 1H(V,Z)(2) ∈ AH(V,Z)(2) is the charac-
teristic element and q = exp(2πiτ). As a result, ΦV (z) converges when (Im z)2 � 0

and extends to an automorphic form on H2(V,R) + i C+
V for O+(H(V,Z)) of weight

deg V + 4 vanishing exactly on the Heegner divisor of norm (−1)-vectors of H(V,Z).
If Exc(V ) ⊂ H2(V,Z) denotes the exceptional classes on V , the following functional
equations hold by the automorphic property of ΦV (z) (cf. Sect. 6.3):

(a) ΦV (z + l) = ΦV (z) for all l ∈ H2(V,Z) with 〈l, c1(V )〉V ≡ 0 mod 2.
(b) ΦV (g(z)) = ±ΦV (z) for all g ∈ O+(H2(V,Z)).
(c) ΦV (− z

〈z,z〉V + δ) = −(−〈z, z〉V )deg V+4 ΦV (z + δ) for all δ ∈ Exc(V ).

(d) ΦV (− 2z
〈z,z〉V ) = (− 〈z,z〉V2 )deg V+4 ΦV (z).

Since c1(V )/2 is a Weyl vector of H2(V,Z)(2), the Fourier expansion of ΦV (2z) is
of Lie type in the sense of [18] by (a), (b). Hence there exists a Borcherds superalgebra
whose denominator function is ΦV (2z). This Borcherds superalgebra is obtained as
an automorphic correction [17] of the Kac-Moody algebra defined by the generalized
Cartan matrix (2〈c1(E), c1(E′)〉V )E,E′∈Exc(V ). (See Question 4.4.)

Let ‖ΦV ‖ and ‖η‖ be the Petersson norms of ΦV (z) and η(τ), respectively. Then
‖ΦV ‖2 · ‖η24‖2 is a function on (H2(V,R) + i C+

V )× H invariant under the action of
O+(H(V,Z)) × SL2(Z). The following (cf. Theorems 5.7 and 6.4) is the main result
of this paper.

Theorem 1.1. — If V is a Del Pezzo surface with 1 ≤ deg V ≤ 6, then there exists a
constant Cdeg V depending only on deg V such that the following equation of functions
on the moduli space of Borcea–Voisin threefolds of type H(V,Z)(2) holds:

τBCOV = Cdeg V ‖ΦV ‖2 · ‖η24‖2.

Under the identification of τBCOV with F1 in B-model [2], [3], it follows from
Theorem 1.1 that the conjecture of Harvey–Moore [19, Sect. 7] holds for Borcea–
Voisin threefolds of type H(V,Z)(2) when 1 ≤ deg V ≤ 6, since ΦV is the denominator
function of a Borcherds superalgebra.

After Theorem 1.1, the conjecture of Bershadsky–Cecotti–Ooguri–Vafa [2], [3]
seems to predict that the elliptic Gromov–Witten invariants of the mirror of Borcea–
Voisin threefolds of type H(V,Z)(2) are expressed as certain linear combinations of
the Fourier coefficients c(0)

deg V (m), c(1)
deg V (m). If this is the case, the invariant of K3
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surfaces with involution constructed in [37] would be the Borcherds lift of an ellip-
tic modular form whose Fourier coefficients are elliptic Gromov–Witten invariants of
some Calabi–Yau threefolds by the structure theorem [38, Th. 0.1]. However, since
the Borcea–Voisin construction of mirrors [9], [36] does not apply to Borcea–Voisin
threefolds of type H(V,Z)(2), we do not know the existence of mirrors for those
Borcea–Voisin threefolds as well as their elliptic Gromov–Witten invariants.

This paper is organized as follows. In Sect. 2, we recall some definitions and results
about lattices. In Sect. 3, we recall Borcea–Voisin threefolds and study their moduli
space. In Sect. 4, we introduce the automorphic form Φm, which will be identified with
ΦV in Sect. 6. In Sect. 5, we recall the BCOV invariant of a Calabi–Yau threefold and
we prove the main theorem. In Sect. 6, we rewrite the automorphic form Φm as an
automorphic form on the complexified Kähler cone of a Del Pezzo surface to give an
identification between Φm and ΦV .

Acknowledgements. — The author thanks the referee for helpful comments, which
inspired Question 5.18.

2. Lattices and orthogonal modular varieties

A free Z-module of finite rank endowed with a non-degenerate, integral, sym-
metric bilinear form is called a lattice. We often identify a non-degenerate, integral,
symmetric matrix with the corresponding lattice. The rank of a lattice L is denoted
by r(L). The signature of L is denoted by sign(L) = (b+(L), b−(L)). A lattice L is
Lorentzian if sign(L) = (1, r(L) − 1). For a lattice L with bilinear form 〈·, ·〉, we de-
note by L(k) the lattice with bilinear form k〈·, ·〉. The set of roots of L is defined
by ∆L := {d ∈ L; 〈d, d〉 = −2}. The isometry group of L is denoted by O(L). For
r ∈ L⊗R, the reflection sr ∈ O(L⊗R) is defined by sr(x) = x−2 〈x,r〉〈r,r〉 r for x ∈ L⊗R.
If δ ∈ L and δ2 = −1 or δ2 = −2, then sδ ∈ O(L). The subgroup of O(L) generated
by the reflections {sδ}δ∈∆L

is called the Weyl group of L and is denoted by W (L).
The dual lattice of L is defined by L∨ := HomZ(L,Z) ⊂ L⊗Q. We set AL := L∨/L.
A lattice L is unimodular if AL = 0. A lattice L is even if 〈x, x〉 ∈ 2Z for all x ∈ L. A
lattice is odd if it is not even. A sublattice M ⊂ L is primitive if L/M has no torsion
elements.

2.1. 2-elementary lattices. — Set Z2 := Z/2Z. An even lattice L is 2-elementary
if there is an integer l ≥ 0 with AL ∼= Zl2. For a 2-elementary lattice L, we set
l(L) := dimZ2

AL.
Let U =

(
0 1
1 0

)
and let A1, E8 be the negative-definite Cartan matrix of type A1, E8

respectively, which are identified with the corresponding even lattices. Then U and
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