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THE COHOMOLOGICAL EQUATION FOR PARTIALLY
HYPERBOLIC DIFFEOMORPHISMS

by

Amie Wilkinson

Abstract. — We develop criteria for the existence and regularity of solutions to the
cohomological equation over an accessible, partially hyperbolic diffeomorphism.

Résumé. — Nous développons des critères pour l’existence et la régularité des so-
lutions de l’équation cohomologique au dessus d’un difféomorphisme partiellement
hyperbolique et accessible.

Introduction

Let f : M → M be a dynamical system and let φ : M → R be a function. Consid-
erable energy has been devoted to describing the set of solutions to the cohomological
equation:

φ = Φ ◦ f − Φ,(1)

under varying hypotheses on the dynamics of f and the regularity of φ. When a so-
lution Φ: M → R to this equation exists, then φ is a called coboundary, for in the
appropriate cohomology theory we have φ = dΦ. For historical reasons, a solution Φ

to (1) is called a transfer function. The study of the cohomological equation has seen
application in a variety of problems, among them: smoothness of invariant measures
and conjugacies; mixing properties of suspended flows; rigidity of group actions; and
geometric rigidity questions such as the isospectral problem. This paper studies solu-
tions to the cohomological equation when f is a partially hyperbolic diffeomorphism
and φ is Cr, for some real number r > 0.

A partially hyperbolic diffeomorphism f : M → M of a compact manifold M is
one for which there exists a nontrivial, Tf -invariant splitting of the tangent bundle
TM = Es ⊕ Ec ⊕ Eu and a Riemannian metric on M such that vectors in Es are
uniformly contracted by Tf in this metric, vectors in Eu are uniformly expanded, and
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the expansion and contraction rates of vectors in Ec is dominated by the corresponding
rates in Eu and Es, respectively. An Anosov diffeomorphism is one for which the
bundle Ec is trivial.

In the case where f is an Anosov diffeomorphism, there is a wealth of classical
results on this subject, going back to the seminal work of Livšic, which we summarize
here in Theorem 0.1. Here and in the rest of the paper, the notation Ck,α, for k ∈ Z+,
α ∈ (0, 1], means Ck, with α-Hölder continuous kth derivative (where C0,α, α ∈ (0, 1]

simply means α-Hölder continuous). For α ∈ (0, 1), Cα means α-Hölder continuous.
More generally, if r > 0 is not an integer, then we will also write Cr for Cbrc,r−brc.

Theorem 0.1. — [23, 24, 25, 15, 16, 28, 19, 26] Let f : M → M be an Anosov
diffeomorphism and let φ : M → R be Hölder continuous.

I. Existence of solutions. If f is C1 and transitive, then (1) has a continuous
solution Φ if and only if

∑
x∈ O φ(x) = 0, for every f -periodic orbit O.

II. Hölder regularity of solutions. If f is C1, then every continuous solution
to (1) is Hölder continuous.

III. Measurable rigidity. Let f be C2 and volume-preserving. If there exists a
measurable solution Φ to (1), then there is a continuous solution Ψ, with Ψ = Φ a.e.

More generally, if f is Cr and topologically transitive, for r > 1, and µ is a Gibbs
state for f with Hölder potential, then the same result holds: if there exists a measur-
able function Φ such that (1) holds µ-a.e., then there is a continuous solution Ψ, with
Ψ = Φ, µ-a.e.

IV. Higher regularity of solutions. Suppose that r > 1 is not an integer, and
suppose that f and φ are Cr. Then every continuous solution to (1) is Cr.

If f and φ are C1, then every continuous solution to (1) is C1.
If f and φ are real analytic, then every continuous solution to (1) is real analytic.

There are several serious obstacles to overcome in generalizing these results to
partially hyperbolic systems. For one, while a transitive Anosov diffeomorphism has
a dense set of periodic orbits, a transitive partially hyperbolic diffeomorphism might
have no periodic orbits (for an example, one can take the time-t map of a transitive
Anosov flow, for an appropriate choice of t). Hence the hypothesis appearing in part
I can be empty: the vanishing of

∑
x∈ O φ(x) for every periodic orbit of f cannot be a

complete invariant for solving (1).
This first obstacle was addressed by Katok and Kononenko [20], who defined a

new obstruction to solving equation (1) when f is partially hyperbolic. To define
this obstruction, we first define a relevant collection of paths in M , called su-paths,
determined by a partially hyperbolic structure.

The stable and unstable bundles Es and Eu of a partially hyperbolic diffeomor-
phism are tangent to foliations, which we denote by W s and W u respectively [5].
The leaves of W s and W u are contractible, since they are increasing unions of sub-
manifolds diffeomorphic to Euclidean space. An su-path in M is a concatenation of
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finitely many subpaths, each of which lies entirely in a single leaf of W s or a single
leaf of W u. An su-loop is an su-path beginning and ending at the same point.

We say that a partially hyperbolic diffeomorphism f : M → M is accessible if
any point in M can be reached from any other along an su-path. The accessibility
class of x ∈ M is the set of all y ∈ M that can be reached from x along an su-path.
Accessibility means that there is one accessibility class, which contains all points.
Accessibility is a key hypothesis in most of the results that follow. We remark that
Anosov diffeomorphisms are easily seen to be accessible, by the transversality of Eu

and Es and the connectedness of M .
Any finite tuple of points (x0, x1, . . . , xk) in M with the property that xi and xi+1

lie in the same leaf of either W s or W u, for i = 0, . . . , k−1, determines an su-path from
x0 to xk; if in addition xk = x0, then the sequence determines an su-loop. Following
[1], we call such a tuple (x0, x1, . . . , xk) an accessible sequence and if x0 = xk, an
accessible cycle (the term periodic cycle is used in [20]).

For f a partially hyperbolic diffeomorphism, there is a naturally-defined periodic
cycles functional

PCF : {accessible sequences} × Cα(M)→ R.

which was introduced in [20] as an obstruction to solving (1). For x ∈ M and x′ ∈
W u

(x), we define:

PCF(x,x′)φ =
∞∑
i=1

φ(f−i(x))− φ(f−i(x′)),

and for x′ ∈ W s
(x), we define:

PCF(x,x′)φ =
∞∑
i=0

φ(f i(x′))− φ(f i(x)).

The convergence of these series follows from the Hölder continuity of φ and the expan-
sion/contraction properties of the bundles Eu and Es. This definition then extends
to accessible sequences by setting PCF(x0,...,xk)φ =

∑k−1
i=0 PCF(xi,xi+1)(φ).

Assuming a hypothesis on f called local accessibility(1), [20] proved that the closely
related relative cohomological equation:

φ = Φ ◦ f − Φ + c,(2)

has a solution Φ: M → R and c ∈ R, with Φ continuous, if and only if PCFγ(φ) = 0,
for every accessible cycle γ.

The local accessibility hypothesis in [20] has been verified only for very special
classes of partially hyperbolic systems, and it is not known whether there exist

(1) A partially hyperbolic diffeomorphism f : M →M is locally accessible if for every compact subset
M1 ⊂M there exists k ≥ 1 such that for any ε > 0, there exists δ > 0 that for every x, x′ ∈M with
x ∈M1 and d(x, x′) < δ, there is an accessible sequence (x = x0, . . . , xk = x′) from x to x′ satisfying

d(xi, x) ≤ ε, and dW∗ (xi+1, xi) < 2ε, for i = 0, . . . , k − 1

where dW∗ denotes the distance along the W s or W u leaf common to the two points.
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C1-open sets of locally accessible diffeomorphisms, or more generally, whether acces-
sibility implies local accessibility (although this seems unlikely). Assuming the strong
hypothesis that Eu and Es are C∞ bundles, [20] also showed that a continuous
transfer function for a C∞ coboundary is always C∞.

The starting point of the results here, part I of Theorem A below, is the observation
that the local accessibility hypothesis in [20] can be replaced simply by accessibility.
Accessibility is known to hold for a C1 open and dense subset of all partially hyper-
bolic systems [14], is Cr open and dense among partially hyperbolic systems with
1-dimensional center [36, 7], and is conjectured to hold for a Cr open and dense
subset of all partially hyperbolic diffeomorphisms, for all r ≥ 1 [32]. Thus, part I of
Theorem A gives a robust counterpart of part I of Theorem 0.1 for partially hyperbolic
diffeomorphisms.

Another of the aforementioned major obstacles to generalizing Theorem 0.1 to the
partially hyperbolic setting is that the regularity results in part IV fail to hold for
general partially hyperbolic systems. Veech [37] and Dolgopyat [13] both exhibited
examples of partially hyperbolic diffeomorphisms (volume-preserving and ergodic)
where there is a sharp drop in regularity from φ to a solution Φ. These examples are
not accessible. Here we show in Theorem A, part IV, that assuming accessibility and
a C1-open property called strong r-bunching (which incidentally is satisfied by the
nonaccessible examples in [37, 13]), there is no significant loss of regularity between
φ and Φ.

Part III of Theorem 0.1 is the most resistant to generalization, primarily because a
general notion of Gibbs state for a partially hyperbolic diffeomorphism remains poorly
understood. In the conservative setting, the most general result to date concerning
ergodicity of for partially hyperbolic diffeomorphisms is due to Burns and Wilkinson
[9], who show that every C2, volume-preserving partially hyperbolic diffeomorphism
that is center-bunched and accessible is ergodic. Center bunching is a C1-open prop-
erty that roughly requires that the action of Tf on Ec be close to conformal, relative
to the expansion and contraction rates in Es and Eu (see Section 2). Adopting the
same hypotheses as in [9], we recover here the analogue of Theorem 0.1 part III for
volume-preserving partially hyperbolic diffeomorphisms.

We now state our main result.

Theorem A. — Let f : M →M be partially hyperbolic and accessible, and let φ : M →
R be Hölder continuous.

I. Existence of solutions. If f is C1, then (2) has a continuous solution Φ for
some c ∈ R if and only if PCF C (φ) = 0, for every accessible cycle C .

II. Hölder regularity of solutions. If f is C1, then every continuous solution
to (2) is Hölder continuous.

III. Measurable rigidity. Let f be C2, center bunched, and volume-preserving.
If there exists a measurable solution Φ to (2), then there is a continuous solution Ψ,
with Ψ = Φ a.e.
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IV. Higher regularity of solutions. Let k ≥ 2 be an integer. Suppose that f
and φ are both Ck and that f is strongly r-bunched, for some r < k − 1 or r = 1. If
Φ is a continuous solution to (2), then Φ is Cr.

The center bunching and strong r-bunching hypotheses in parts III and IV are
C1-open conditions and are defined in Section 2. Theorem A part IV generalizes all
known C∞ Livšic regularity results for accessible partially hyperbolic diffeomorph-
isms. In particular, it applies to all time-t maps of Anosov flows and compact group
extensions of Anosov diffeomorphisms. Accessibility is a C1 open and C∞ dense condi-
tion in these classes [8, 6]. In dimension 3, for example, the time-1 map of any mixing
Anosov flow is stably accessible [6], unless the flow is a constant-time suspension of
an Anosov diffeomorphism.

We also recover the results of [13] in the context of compact group extensions of
volume-preserving Anosov diffeomorphisms. Finally, Theorem A also applies to all
accessible, partially hyperbolic affine transformations of homogeneous manifolds. A
direct corollary that encompasses these cases is:

Corollary 0.2. — Let f be C∞, partially hyperbolic and accessible. Assume that Tf |Ec
is isometric in some continuous Riemannian metric. Let φ : M → R be C∞. Suppose
there exists a continuous function Φ: M → R such that

φ = Φ ◦ f − Φ.

Then Φ is C∞. If, in addition, f preserves volume, then any measurable solution Φ

extends to a C∞ solution.
For any such f , and any integer k ≥ 2, there is a C1 open neighborhood U of f

in Diffk(M) such that, for any accessible g ∈ U, and any Ck function φ : M → R, if

φ = Φ ◦ g − Φ,

has a continuous solution Φ, then Φ is C1 and also Cr, for all r < k − 1. If g also
preserves volume, then any measurable solution extends to a Cr solution.

The vanishing of the periodic cycles obstruction in Theorem A, part I turns out to
be a practical method in many contexts for determining whether (2) has a solution.
On the one hand, this method has already been used by Damjanović and Katok to
establish rigidity of certain partially hyperbolic abelian group actions [12]; in this
(locally accessible, algebraic) context, checking that the PCF obstruction vanishes
reduces to questions in classical algebraic K-theory (see also [11, 21]). On the other
hand, for a given accessible partially hyperbolic system, the PCF obstruction provides
an infinite codimension obstruction to solving (2), and so the generic cocycle φ has
no solutions to (2). This latter fact follows from recent work of Avila, Santamaria and
Viana on the related question of vanishing of Lyapunov exponents for linear cocycles
over partially hyperbolic systems (see [1], Section 9).

As part of proof of Theorem A, part II, we also prove that stable and unsta-
ble foliations of any C1 partially hyperbolic diffeomorphism are transversely Hölder
continuous (Corollary 5.3). This extends to the C1 setting the well-known fact that
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