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by Haynes MILLER

INTRODUCTION

Around the year 1960 the theory of surgery was developed as part of a program to
classify manifolds of dimension greater than 4. Among the questions it addresses is
this: Does every framed cobordism class contain a homotopy sphere?

Recall that a framing of a closed smooth manifold is an embedding into Euclidean
space together with a trivialization of the normal bundle. A good example is given by
the circle embedded in R3, with a framing t such that the framing normal vector fields
have linking number ±1 with the circle itself. A framed manifold is null-bordant if it
is the boundary of a framed manifold-with-boundary, and two framed manifolds are
cobordant if their difference is null-bordant. Cobordism classes of framed n-manifolds
form an abelian group Ωfr

n . The class of (S1, t) in Ωfr
1 is written η.

Any closed manifold of the homotopy type of Sn admits a framing [20], and
the seemingly absurdly ambitious question arises of whether every class contains a
manifold of the homotopy type (and hence, by Smale, of the homeomorphism type,
for n > 4) of a sphere. (Classes represented by some framing of the standard n-sphere
form a cyclic subgroup of order given by the resolution of the Adams conjecture in
the late 1960’s.)

A result of Pontryagin from 1950 implied that the answer had to be “No” in general:
η2 6= 0 in Ωfr

2 , while S2 is null-bordant with any framing.
Kervaire and Milnor [20] showed that the answer is “Yes” unless n = 4k + 2; but

that there is an obstruction, the Kervaire invariant

κ : Ωfr
4k+2 → Z/2Z ,

which vanishes on a cobordism class if and only if the class contains a homotopy
sphere. Kervaire’s construction [19] of a PL 10-manifold with no smooth structure
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amounted to showing that κ = 0 on Ωfr
10. Pontryagin had shown that κ(η2) 6= 0,

and in fact the Kervaire invariant is nontrivial on the square of any element of Hopf
invariant one. In [20] Kervaire and Milnor speculated that these may be the only
examples with κ 6= 0.

The Pontryagin-Thom construction establishes an isomorphism between Ωfr
n and

the stable homotopy group πsn(S0), and in 1969 Browder [6] gave a homotopy theoretic
interpretation of the Kervaire invariant (Theorem 1.1 below) which implied that κ = 0

unless 4k+ 2 is of the form 2(2j−1). Homotopy theoretic calculations [27, 5, 3] soon
muddied the waters by providing examples in dimensions 30 and 62. Much effort in
the 1970’s went into understanding the role of these classes and attempting inductive
constructions of them in all dimensions.

The focus of this report is the following result.

Theorem 0.1 (Hill, Hopkins, Ravenel, 2009, [15]). — The Kervaire invariant
κ : Ωfr

4k+2 → Z/2 is trivial unless 4k + 2 = 2, 6, 14, 30, 62, or (possibly) 126.

The case 4k + 2 = 126 remains open.

In his proof that κ is trivial in dimension 10, Kervaire availed himself of the current
state of the art in homotopy theory (mainly work of Serre). Kervaire and Milnor
relied on contemporaneous work of Adams. Over the intervening fifty years, further
developments in homotopy theory have been brought to bear on the Kervaire invariant
problem. In 1964, for example, Brown and Peterson brought spin bordism into play
to show that κ is trivial in dimensions 8k + 2, k > 0, and Browder’s work used
the Adams spectral sequence. Over the past quarter century, however, essentially no
further progress has been made on this problem till the present work.

Hill, Hopkins, and Ravenel (hereafter HHR) marshall three major developments in
stable homotopy theory in their attack on the Kervaire invariant problem:

– The chromatic perspective based on work of Novikov and Quillen and pioneered
by Landweber, Morava, Miller, Ravenel, Wilson, and many more recent workers;

– The theory of structured ring spectra, implemented by May and many others;
and

– Equivariant stable homotopy theory, as developed by May and collaborators.

The specific application of equivariant stable homotopy theory was inspired by analogy
with a fourth development, the motivic theory initiated by Voevodsky and Morel, and
uses as a starting point the theory of “Real bordism” investigated by Landweber,
Araki, Hu and Kriz. In their application of these ideas, HHR require significant
extensions of the existing state of knowledge of this subject, and their paper provides
an excellent account of the relevant parts of equivariant stable homotopy theory.

ASTÉRISQUE 348



(1029) KERVAIRE INVARIANT ONE 67

1. THE KERVAIRE INVARIANT

1.1. Geometry

Any compact smooth n-manifold M embeds into a Euclidean space, and in high
codimension any two embeddings are isotopic. The normal bundle ν is thus well
defined up to addition of a trivial bundle. A framing of M is a bundle isomorphism
t : ν →M × Rq. The Pontryagin-Thom construction is the induced contravariant map
on one-point compactifications, Sn+q = Rn+q

+ → (M × Rq)+ = M+ ∧ Sq, giving an
element of πn+q(M+ ∧ Sq).

This group becomes independent of q for q > n, and is termed the nth stable
homotopy group πsn(M+) = limq→∞ πn+q(M+ ∧ Sq) of M . The Pontryagin-Thom
construction provides a “stable homotopy theory fundamental class” [M, t] ∈ πsn(M+).
Composing with the map collapsing M to a point gives an element of πsn(S0).
A bordism between framed manifolds determines a homotopy between their
Pontryagin-Thom collapse maps, and this construction gives an isomorphism from
the framed bordism group to πsn(S0).

A framing of a manifold M of dimension 4k + 2 determines additional structure
in the cohomology of M . A cohomology class x ∈ H2k+1(M ;F2) is represented by
a well-defined homotopy class of maps M+ → K(F2, 2k + 1). When we apply the
stable homotopy functor we get a map πs∗(M+) → πs∗(K(F2, 2k + 1)). A calculation
[7] shows that πs4k+2(K(F2, 2k+ 1)) = Z/2, so the class [M, t] determines an element
qt(x) ∈ Z/2.

This Kervaire form qt : H2k+1(M ;F2) → Z/2 turns out to be a quadratic
refinement of the intersection pairing x · y = 〈x ∪ y, [M ]〉—that is to say,

qt(x+ y) = qt(x) + qt(y) + x · y .

In the group (under direct sum) of isomorphism classes of finite dimensional
F2-vector spaces with nondegenerate quadratic form, the Kervaire forms of cobordant
framed manifolds are congruent modulo the subgroup generated by the hyperbolic
quadratic space (H, q) with H = 〈a, b〉, q(a) = q(b) = q(0) = 0, q(a + b) = 1. This
quotient is the quadratic Witt group of F2, and is of order 2. The element of Z/2
corresponding to a quadratic space is given by the Arf invariant, namely the more
popular of {0, 1} as a value of q. The Kervaire invariant of (M, t) is then the Arf
invariant of the quadratic space (H2k+1(M ;F2), qt). This defines a homomorphism

κ : πs4k+2(S0) = Ωfr
4k+2 → Z/2 .
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1.2. Homotopy theory

Regarding κ as defined on πs4k+2(S0) invites the question: What is a homotopy-
theoretic interpretation of the Kervaire invariant? This was answered by Browder in
a landmark paper [6], in terms of the Adams spectral sequence.

Discussion of these matters is streamlined by use of the stable homotopy category
h S, first described in Boardman’s thesis (1964). Its objects are called spectra and
are designed to represent cohomology theories. There are many choices of underlying
categories of spectra, but they all lead the same homotopy category h S, which is
additive, indeed triangulated, and symmetric monoidal (with tensor product given
by the “smash product” ∧). It is an analog of the derived category of a commutative
ring. There is a “stabilization” functor Σ∞ from the homotopy category of pointed CW
complexes to h S. It sends the two point space S0 to the “sphere spectrum” Σ∞S0 = S
which serves as the unit for the smash product. The suspension functor Σ is given by
smashing with Σ∞S1. The homotopy of a spectrum E is πn(E) = [ΣnS, E], so that, for
a space X, πsn(X) = πn(Σ∞X+). Ordinary mod 2 cohomology of a space X (which
we abbreviate to H∗(X)) is represented by the Eilenberg-Mac Lane spectrum H—
Hn(X) = [Σ∞X+,Σ

nH]—and, as explained by G. Whitehead, homology is obtained
as Hn(X) = [ΣnS,Σ∞X+ ∧ H]. The cup product is represented by a structure map
H ∧H → H, making H into a “ring-spectrum.” The unit map for this ring structure,
S→ H, represents a generator of π0(H) = H0(S). The graded endomorphism algebra
of the object H is the well-known Steenrod algebra A of stable operations on mod 2
cohomology.

Evaluation of homology gives a natural transformation (generalizing the degree)

dX : πt(X) = [ΣtS, X]→ Hom A(H∗(X), H∗(ΣtS))

which is an isomorphism if X = H. This leads to the Adams spectral sequence

Es,t2 (X;H) = Exts,tA (H∗(X),F2) = ExtsA(H∗(X), H∗(ΣtS)) =⇒ πt−s(X)∧2

for X a spectrum such that πn(X) = 0 for n � 0 and Hn(X) is finite dimensional
for all n. It converges to the 2-adic completion of the homotopy groups of X. In
particular,

Es,t2 = Exts,tA (F2,F2) =⇒ πt−s(S)∧2 .

To this day these Ext groups remain quite mysterious overall, but in [1] Adams
computed them for s ≤ 2. E0,t

2 is of course just F2 in t = 0. The edge homomorphism

e : πt−1(S)→ E1,t
2

is the “mod 2 Hopf invariant.” One interpretation of this invariant is that e(α) 6= 0

if and only if the mapping cone S0 ∪α et supports a nonzero Steenrod operation of
positive degree. E1,∗

2 is the dual of the module of indecomposables in the Steenrod
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