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SPARSE QUADRATIC FORMS
AND THEIR GEOMETRIC APPLICATIONS

[following Batson, Spielman and Srivastava]

by Assaf NAOR

1. INTRODUCTION

In what follows all matrices are assumed to have real entries, and square matrices
are always assumed to be symmetric unless stated otherwise. The support of a k × n
matrix A = (aij) will be denoted below by

supp(A) =
{

(i, j) ∈ {1, . . . , k} × {1, . . . , n} : aij 6= 0
}
.

If A is an n×n matrix, we denote the decreasing rearrangement of its eigenvalues by

λ1(A) > λ2(A) > · · · > λn(A).

Rn will always be assumed to be equipped with the standard scalar product 〈·, ·〉.
Given a vector v ∈ Rn and i ∈ {1, . . . , n}, we denote by vi the ith coordinate of v.
Thus for u, v ∈ Rn we have 〈u, v〉 =

∑n
i=1 uivi.

Our goal here is to describe the following theorem of Batson, Spielman and Sri-
vastava [5], and to explain some of its recently discovered geometric applications. We
expect that there exist many more applications of this fundamental fact in matrix
theory.

Theorem 1.1. — For every ε ∈ (0, 1) there exists c(ε) = O(1/ε2) with the following
properties. Let G = (gij) be an n × n matrix with nonnegative entries. Then there
exists an n× n matrix H = (hij) with nonnegative entries that satisfies the following
conditions:

1. supp(H) ⊆ supp(G).
2. The cardinality of the support of H satisfies |supp(H)| 6 c(ε)n.

(∗) Supported in part by NSF grant CCF-0635078, BSF grant 2006009, and the Packard Foundation.
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3. For every x ∈ Rn we have

(1)
n∑
i=1

n∑
j=1

gij(xi − xj)2 6
n∑
i=1

n∑
j=1

hij(xi − xj)2 6 (1 + ε)
n∑
i=1

n∑
j=1

gij(xi − xj)2.

The second assertion of Theorem 1.1 is that the matrix H is sparse, yet due to
the third assertion of Theorem 1.1 the quadratic form

∑n
i=1

∑n
j=1 hij(xi − xj)

2 is
nevertheless a good approximation of the quadratic form

∑n
i=1

∑n
j=1 gij(xi − xj)2.

For this reason Theorem 1.1 is called in the literature a sparsification theorem.

The bound on |supp(H)| obtained in [5] is

(2) |supp(H)| 6 2

¢
(
√

1 + ε+ 1)4

ε2
n

•
.

Thus c(ε) 6 32/ε2 + O(1/ε). There is no reason to expect that (2) is best possible,
but a simple argument [5, Section 4] shows that necessarily c(ε) > 8/ε2.

1.1. Historical discussion

The sparsification problem that is solved (up to constant factors) by Theorem 1.1
has been studied for some time in the theoretical computer science literature. The mo-
tivations for these investigations were algorithmic, and therefore there was emphasis
on constructing the matrix H quickly. We will focus here on geometric applications
of Theorem 1.1 for which the existential statement suffices, but we do wish to state
that [5] shows that H can be constructed in time O(n3|supp(G)|/ε2) = O(n5/ε2).
For certain algorithmic applications this running time is too slow, and the literature
contains works that yield weaker asymptotic bounds on |supp(H)| but have a faster
construction time. While such tradeoffs are important variants of Theorem 1.1, they
are not directly relevant to our discussion and we will not explain them here. For the
applications described below, even a weaker bound of, say, |supp(H)| 6 c(ε)n log n is
insufficient.

Benczúr and Karger [6] were the first to study the sparsification problem. They
proved the existence of a matrix H with |supp(H)| 6 c(ε)n log n, that satisfies the
conclusion (1) only for Boolean vectors x ∈ {0, 1}n. In their series of works on fast
solvers for certain linear systems [43, 46, 45, 44], Spielman and Teng studied the
sparsification problem as stated in Theorem 1.1, i.e., with the conclusion (1) holding
for every x ∈ Rn. Specifically, in [44], Spielman and Teng proved Theorem 1.1 with
the weaker estimate |supp(H)| = O

(
n(log n)7/ε2

)
. Spielman and Srivastava [41] im-

proved this estimate on the size of the support of H to |supp(H)| = O(n(log n)/ε2).
As we stated above, Theorem 1.1, which answers positively a conjecture of Spielman-
Srivastava [41], is due to Batson-Spielman-Srivastava [5], who proved this sharp result
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via a new deterministic iterative technique (unlike the previous probabilistic argu-
ments) that we will describe below. This beautiful new approach does not only yield
an asymptotically sharp bound on |supp(H)|: it gives for the first time a deterministic
algorithm for constructing H (unlike the previous randomized algorithms), and it also
gives additional results that will be described later. We refer to Srivastava’s disser-
tation [48] for a very nice and more complete exposition of these ideas. See also the
work of Kolla-Makarychev-Saberi-Teng [23] for additional results along these lines.

1.2. Combinatorial interpretation

Suppose that G is the adjacency matrix of the complete graph, i.e., the
diagonal entries of G vanish and gij = 1 if i 6= j. Assume also that the ma-
trix H of Theorem 1.1 happens to be a multiple of the adjacency matrix of a
d-regular graph Γ = ({1, . . . , n}, E), i.e., for some γ > 0 and all i, j ∈ {1, . . . , n}
we have hij = γ if {i, j} ∈ E and hij = 0 otherwise. Thus |supp(H)| = dn. By
expanding the squares in (1) and some straightforward linear algebra, we see
that (1) is equivalent to the bound (λ1(H)− λn(H))/(λ1(H)− λ2(H)) 6 1 + ε.
Thus if ε is small then the graph Γ is a good expander (see [18] for back-
ground on this topic). The Alon-Boppana bound [30] implies that H satis-
fies (λ1(H)− λn(H))/(λ1(H)− λ2(H)) > 1 + 4(1− o(1))

√
d as n, d→∞. This

lower bound can be asymptotically attained since if Γ is a Ramanujan graph
of Lubotzky-Phillips-Sarnak [24] then λ1(H)/γ, λn(H)/γ ∈

[
−2
√
d− 1, 2

√
d− 1

]
.

Writing 1 + ε =
(
d+ 2

√
d− 1

)
/
(
d− 2

√
d− 1

)
= 1 + 4(1 + o(1))/

√
d, we see that the

existence of Ramanujan graphs means that (in this special case of the complete graph)
there exists a matrix H satisfying (1) with |supp(H)| = dn = 16n(1 + o(1))/ε2. The
bound on |supp(H)| in (2) shows that Thereom 1.1 achieves the optimal Ramanujan
bound up to a factor of 2. For this reason Batson-Spielman-Srivastava call the
matrices produced by Theorem 1.1 “twice-Ramanujan sparsifiers”. Of course, this
analogy is incomplete since while the matrix H is sparse, it need not be a multiple
of the adjacency matrix of a graph, but rather an adjacency matrix of a weighted
graph. Moreover, this graph has bounded average degree, rather than being a regular
graph of bounded degree. Such weighted sparse (though non-regular) graphs still have
useful pseudorandom properties (see [5, Lemma 4.1]). Theorem 1.1 can be therefore
viewed as a new deterministic construction of “expander-like” weighted graphs, with
very good spectral gap. Moreover, it extends the notion of expander graphs since one
can start with an arbitrary matrix G before applying the sparsification procedure,
with the quality of the resulting expander (measured in terms of absolute spectral
gap) being essentially the same as the quality of G as an expander.
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1.3. Structure of this paper

In Section 2 we state a stronger theorem (Theorem 2.1) of Batson-Spielman-
Srivastava [5], and prove that it implies Theorem 1.1. Section 3 contains the Batson-
Spielman-Srivastava proof of this theorem, which is based on a highly original iterative
argument. Section 4 contains an application of Theorem 2.1, due to Srivastava [47],
to approximate John decompositions. In section 5 we describe two applications of
Theorem 2.1, due to Newman-Rabinovich [29] and Schechtman [38], to dimension-
ality reduction problems. Section 6 describes the work of Spielman-Srivastava [42]
that shows how their proof technique for Theorem 2.1 can be used to prove a sharper
version of the Bourgain-Tzafriri restricted invertibility principle. Section 7 contains
concluding comments and some open problems.

2. A STRONGER THEOREM

Batson-Spielman-Srivastava actually proved a stronger theorem that implies Theo-
rem 1.1. The statement below is not identical to the statement in [5], though it easily
follows from it. This formulation is stated explicitly as Theorem 1.6 in Srivastava’s
dissertation [48].

Theorem 2.1. — Fix ε ∈ (0, 1) and m,n ∈ N. For every x1, . . . , xm ∈ Rn there exist
s1, . . . , sm ∈ [0,∞) such that

(3)
∣∣{i ∈ {1, . . . ,m} : si 6= 0

}∣∣ 6 ⌈ n
ε2

⌉
,

and for all y ∈ Rn we have

(4) (1− ε)2
m∑
i=1

〈xi, y〉2 6
m∑
i=1

si〈xi, y〉2 6 (1 + ε)2
m∑
i=1

〈xi, y〉2.

2.1. Deduction of Theorem 1.1 from Theorem 2.1

Let G = (gij) be an n×n matrix with nonnegative entries. Note that the diagonal
entries of G play no role in the conclusion of Theorem 1.1, so we may assume in what
follows that gii = 0 for all i ∈ {1, . . . , n}.
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