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1. INTRODUCTION

1.1. Elliptic curves

An elliptic curve E over Q is the projective closure of a curve y2 = x3 + Ax + B

for some fixed A,B ∈ Q satisfying 4A3 + 27B2 6= 0 (the inequality is the condition
for the curve to be smooth). Such curves are interesting because

1. they are the simplest algebraic varieties whose rational points are not completely
understood, and

2. they are the simplest examples of projective algebraic groups of positive dimen-
sion.

The abelian group E(Q) of rational points on E is finitely generated [37]. Hence
E(Q) ' Zr ⊕ T for some nonnegative integer r (the rank) and some finite abelian
group T (the torsion subgroup). The torsion subgroup is well understood, thanks to
B. Mazur [33], but the rank remains a mystery. Already in 1901, H. Poincaré [39,
p. 173] asked what is the range of possibilities for the minimum number of generators
of E(Q), but it is not known even whether r is bounded. There are algorithms that
compute r successfully in practice, given integers A and B of moderate size, but to
know that the algorithms terminate in general, it seems that one needs a conjecture:
either the finiteness of the Shafarevich–Tate group X (or of its p-primary part for
some prime p), or the Birch and Swinnerton-Dyer conjecture that r equals the analytic
rank ran := ords=1 L(E, s) [8].

The main results of Bhargava and Shankar (Section 1.4) concern the average value
of r as E ranges over all elliptic curves over Q.
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1.2. Selmer groups

There is essentially only one known proof that E(Q) is finitely generated. The
hardest step involves proving the finiteness of E(Q)/nE(Q) for some n ≥ 2. This is
done by embedding E(Q)/nE(Q) into the n-Selmer group Seln(E), which we now
define.

For each prime p, let Qp be the field of p-adic numbers; also define Q∞ := R. Let Q
be an algebraic closure of Q. We write H1(Q, E), for example, to denote the profinite
group cohomology H1(Gal(Q/Q), E(Q)).

Fix n ≥ 2. For any abelian group or group scheme G, let G[n] be the kernel of
multiplication-by-n on G. Taking cohomology of

0 −→ E[n] −→ E
n−→ E → 0

over Q and Qp leads to the exact rows in the commutative diagram

0 // E(Q)

nE(Q)
//

��

H1(Q, E[n]) //

β

��

H1(Q, E)[n] //

��

0

0 //
∏
p≤∞

E(Qp)
nE(Qp)

α //
∏
p≤∞

H1(Qp, E[n]) //
∏
p≤∞

H1(Qp, E)[n] // 0.

(1)

The group H1(Q, E[n]) turns out to be infinite, and it is difficult to determine which
of its elements are in the image of E(Q)/nE(Q). But because arithmetic over Qp is
easier than arithmetic over Q, one can determine which elements are locally in the
image. With this in mind, define

Seln(E) := {x ∈ H1(Q, E[n]) : β(x) ∈ image(α)}.

Diagram (1) shows that the subgroup Seln(E) ⊆ H1(Q, E[n]) is an upper bound for
the image of E(Q)/nE(Q). In fact, if we define also the Shafarevich–Tate group

X = X(E) := ker

Ñ
H1(Q, E)→

∏
p≤∞

H1(Qp, E)

é
,

then diagram (1) yields an exact sequence

(2) 0 −→ E(Q)

nE(Q)
−→ Seln(E) −→X[n] −→ 0.

Moreover, it turns out that Seln(E) is finite and computable.

ASTÉRISQUE 352



(1049) AVERAGE RANK OF ELLIPTIC CURVES 189

1.3. Averaging over all elliptic curves

The average of an infinite sequence of real numbers a1, a2, . . . is defined as
limn→∞(a1 + · · ·+ an)/n, if the limit exists. This may depend on the ordering of the
terms. Hence, to define the average rank of elliptic curves, we should first decide how
to order them.

Tables such as [6, 14, 15, 44] order elliptic curves by their conductor N . But
it is not known even how many elliptic curves have conductor < X asymptotically
as X → ∞, so we cannot hope to prove anything nontrivial about averages for this
ordering. Ordering by minimal discriminant runs into the same difficulty.

Therefore we order by height, which we now define. Elliptic curves y2 = x3+Ax+B

and y2 = x3 + A′x + B′ over Q are isomorphic if and only if there exists q ∈ Q×

such that (A′, B′) = (q4A, q6B). Therefore each isomorphism class contains a unique
representative EAB with (A,B) ∈ Z2 minimal in the sense that there is no prime
p with p4|A and p6|B. Let E be the set of all such EAB . Define the (naïve) height
H(EAB) = H(A,B) := max{|4A3|, 27B2}. (Other authors replace 4 and 27 by other
positive constants; it is only the exponents that matter in the proofs.) For X ∈ R,
define E<X := {E ∈ E : H(E) < X}. For any φ : E → R, define its average by

Average(φ) := lim
X→∞

∑
E∈E<X

φ(E)∑
E∈E<X

1
,

if the limit exists. Define Average(φ) and Average(φ) similarly, but using lim sup or
lim inf, respectively.

We may speak also of the probability or density of the set of elliptic curves satisfying
a given property. Namely, the property P can be identified with its characteristic func-
tion χP : E → {0, 1}; then define Prob(P ) = Average(χP ). Similarly define Prob(P )

and Prob(P ).

Example 1.1. — B. Mazur’s theorem [33] bounds the possibilities for the torsion
subgroup T . The Hilbert irreducibility theorem shows that each nonzero possibility
for T occurs rarely. Together, they show that Prob(T 6= 0) is 0.

1.4. Main results of Bhargava and Shankar

Theorem 1.2 ([4, Theorem 1.1]). — Average(# Sel2) = 3.

If one averages not over all of E , but over a subset defined by finitely many congruence
conditions on A and B (e.g., A ≡ 5 (mod 7) and B ≡ 3 (mod 4)), then the average is
still 3 [4, Theorem 1.3]. This is interesting, given that one of the successful techniques
for constructing elliptic curves of moderately large rank has been to restrict attention
to congruence classes so as to maximize #E(Fp) for the first few primes p [34].

A similar argument leads to
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Theorem 1.3 ([5, Theorem 1]). — Average(# Sel3) ≤ 4.

Again one can obtain the same bound for elliptic curves satisfying finitely many
congruence conditions. One can even impose congruence conditions at infinitely many
primes as long as one can show that the conditions at large primes together are sieving
out a negligible subset.

It is still not known whether Average(r) exists, but Theorems 1.2 and 1.3 yield
upper bounds on Average(r):

Corollary 1.4 ([5, Corollary 2]). — Average(r) ≤ 7/6.

Proof. — Let s = dim Sel3. The injection E(Q)/3E(Q) ↪→ Sel3(E) yields r ≤ s.
Combining this with 6s−3 ≤ 3s bounds r in terms of # Sel3; then apply Average and
use Theorem 1.3. (Why 6s − 3? Since 3s is a convex function, it suffices to connect
the points (s, 3s) for s = 0, 1, . . . in order by line segments, and to take the equation
of the line segment that crosses the horizontal line y = 4.)

Further consequences of Theorem 1.3 make use of results of Dokchitser–Dokchitser
and Skinner–Urban, whose context can be best understood if we introduce a few
more quantities. Taking the direct limit of (2) as n ranges through powers of a prime
p yields the p∞-Selmer group Selp∞(E) fitting in an exact sequence

(3) 0 −→ E(Q)⊗ Qp
Zp
−→ Selp∞(E) −→X[p∞] −→ 0.

Each term in (3) has the form (Qp/Zp)c ⊕ (finite) for some nonnegative integer c called
the corank. Let rp∞ := corank Selp∞(E). Let s′p := dim Selp(E)− dimE[p](Q). If X′

is the quotient of X by its maximal divisible subgroup, then s′p − rp∞ = dim X′[p],
which is even since X′[p∞] is a finite group with a nondegenerate alternating pair-
ing [12]. By (3), rp∞ − r = corank X[p∞], which is 0 if and only if X[p∞] is finite.
To summarize,

(4) s′p ≡ rp∞
ST
= r

BSD
= ran,

where the congruence is modulo 2, and the equalities labeled with the initials of
Shafarevich–Tate and Birch–Swinnerton-Dyer are conjectural. Also,

(5) dim Selp ≥ s′p ≥ rp∞ ≥ r.

In the direction of the conjectural equality rp∞ = ran, we have two recent theorems:

Theorem 1.5 ([18, Theorem 1.4]). — For every elliptic curve E over Q, we have
rp∞ ≡ ran (mod 2).
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