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by Christophe GARBAN

1. INTRODUCTION

The study of statistical physics models in two dimensions (d = 2) at their critical
point is in general a significantly hard problem (not to mention the d = 3 case). In the
eighties, three physicists, Knizhnik, Polyakov and Zamolodchikov (KPZ) came up in
[14] with a novel and far-reaching approach in order to understand the critical behav-
ior of these models. Among these, one finds for example random walks, percolation as
well as the Ising model. The main underlying idea of their approach is to study these
models along a two-step procedure as follows:

– First of all, instead of considering the model on some regular lattice of the plane
(such as Z2 for example), one defines it instead on a well-chosen “random planar
lattice”. Doing so corresponds to studying the model in its quantum gravity form.
In the case of percolation, the appropriate choice of random lattice matches with
the so-called planar maps which are currently the subject of an intense activity
(see for example [22]).

– Then it remains to get back to the actual Euclidean setup. This is done thanks to
the celebrated KPZ formula which gives a very precise correspondence between
the geometric properties of models in their quantum gravity formulation and
their analogs in the Euclidean case.

It is fair to say that the nature and the origin of such a powerful correspondence
remained rather mysterious for a long time. In fact, the KPZ formula is still not rig-
orously established and remains a conjectural correspondence. The purpose of this
survey is to explain how the recent work of Duplantier and Sheffield enables to ex-
plain some of the mystery hidden behind this KPZ formula. To summarize their

(∗) Research partially supported by ANR grant MAC2.
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contribution in one sentence, their work implies a beautiful interpretation of the KPZ
correspondence through a uniformization of the random lattice, seen as a Riemann
surface.

To fully appreciate the results by Duplantier-Sheffield, we will need to introduce
beforehand several related concepts and objects. More precisely, the rest of this in-
troduction is divided as follows: first we give a short and informal discussion about
quantum gravity, then we introduce two universality classes of random lattices. Then
we will come to the KPZ formula through a specific example (boundary of Random
Walks hulls), and finally after stating the main Theorem by Duplantier-Sheffield, we
will state a beautiful conjecture they made.

1.1. A first glance into quantum gravity

Quantum gravity is intimately concerned with the following naive question:

Question 1.1. — How does a “uniformly distributed” random metric on the sphere
S2 typically look ?

What is naive in this question is the fact that one would first need to specify what
we mean by “a uniform probability measure” on the space of metrics on S2. It turns
out that defining a natural model of random metric on the sphere S2 already is a
difficult and interesting problem. To illustrate this, let us ask a similar naive question
in a one-dimensional setting:

Question 1.2. — For any a, b ∈ Rd, how does a “uniformly distributed” path
γ : [0, 1]→ Rd going from a to b typically look ?

This naive question was of crucial importance at the time Feynman developed the
so-called path integral formulation of quantum mechanics.

Already in this case, defining properly a “uniform measure” on paths was not an
easy task. Yet, it had been mathematically settled prior to Feynman’s work and
corresponds to the well-known Brownian motion.

In some sense, the purpose of quantum gravity is to extend Feynman path integrals
to Feynman integrals over surfaces. Physicists are particularly interested in such an
extension, since this would provide a powerful tool to deal with the quantization of
gravitation field theory, a notoriously hard problem. (1) With this background in mind,
the problem of defining a proper mathematical object for a “uniformly chosen random
metric on S2” thus corresponds to defining a two-dimensional analog of Brownian
motion, i.e. a kind of Brownian surface.

(1) This approach towards the quantization of gravitation is called loop quantum gravity.
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Even though physicists are primarily interested in the above continuum formulation
of Question 1.1, a natural and very fruitful approach is to study an appropriate
discretization of it and then to pass to the limit. This brings us to the next subsection.

1.2. Discretization of Question 1.1 and planar maps

In the one-dimensional setting, if one asks Question 1.2, it is not straightforward
to come up right away with Brownian motion. But, if instead we start by discretizing
Question 1.2, say by allowing random 1/n-steps, then we end up with the model of
random walks. Brownian motion is then obtained as the scaling limit (as n → ∞) of
these rescaled random walks.

It is thus tempting to apply the same strategy to Question 1.1, namely to find an
appropriate discretization. Let us explain below a possible discretization which was
used initially in the physics literature and was studied extensively recently among
the mathematical community. See for example [22] and references therein. We will
see in Subsection 1.3 that there are other ways to discretize Question 1.1 which lead
to different universality classes (2), but the discretization below is in some sense the
simplest and most natural one regarding the statement of Question 1.1.

The idea of the discretization we wish to introduce is to consider discrete graphs,
with say n faces, which have the topology of a sphere S2 and for which the metric
ρn will correspond (up to a rescaling factor) to the graph distance, i.e. ρn := n−adgr
for some exponent a > 0. The exponent a will need to be well chosen as in the
case of Random Walks, where space needs to be rescaled by

√
n in order to obtain

a limit. If we define our discretization in such a way that for each n ≥ 1, there are
finitely many such graphs, we can pick one uniformly at random (in the spirit of
Question 1.1) which thus gives us a random metric space (Mn, ρn). We can then ask
the question of the scaling limit of these random variables (Mn, ρn) as n → ∞ in
the space (K, dGH) of all isometry classes of compact metric spaces, endowed with
the Gromov-Hausdorff distance dGH (3). The advantage of this setup is that (K, dGH)

is a complete, separable, metric space (a Polish space) and is thus suitable to the
analysis of convergences in law and so on. Note here, that even if one could prove
that (Mn, ρn) converges to a limiting random object (M∞, ρ∞), it is not clear a priori
that the topology is preserved at the scaling limit or in other words, it needs to be
proved whether (M∞, ρ∞) a.s. has the topology of a sphere or not. If all these steps

(2) Similarly as Random Walks with non-L2 steps converge to other Levy processes than Brownian
Motion.
(3) Informally, if (E1, d1) and (E2, d2) are two compact metric spaces, then dGH(E1, E2) is computed
as follows: we embed E1 and E2 isometrically into some larger metric space (E, d) and we compute
using the common distance d the distance in the Hausdorff sense between the two embeddings. Then
we take the infimum over the possible such embeddings. See [22].
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can be carried on, then this would give us a good candidate (M∞, ρ∞) for the random
object used in Question 1.1.

Let us now introduce one specific discretization.

Definition 1.3 (planar map, following [20]). — A planar map M is a proper embed-
ding of a finite and connected graph into the two-dimensional sphere S2, which is
viewed up to orientation preserving homeomorphisms of S2 (i.e. up to “deformations”).
Loops and multiple edges are allowed. The faces of M are identified with the con-
nected components of S2 \M and the degree of a face f is defined as the number of
edges incident to f , with the additional rule that if both sides of an edge belong to
the same face, this edge is counted twice.

Finally, for combinatorial reasons, it is often convenient to consider rooted planar
maps, meaning that one particular oriented edge −→e is distinguished. The origin of
that root edge −→e is called the root vertex ∅. See Figure 1 for an instance of a planar
map where all faces happen to be squares.

−→e

Figure 1. This is a planar map of the sphere S2 with exactly 17 squares
(this includes the exterior square which is also in the sphere).

Definition 1.4 (p-angulations of the sphere). — For any integer p ≥ 3, let Mp
n be the

set of all rooted planar maps with n faces, where each face has degree p. The elements
of Mp

n are called rooted planar p-angulations. (p = 3 corresponds to triangulations
and p = 4 to quadrangulations).
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