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ARITHMETIC AND POLYNOMIAL PROGRESSIONS
IN THE PRIMES

[after Gowers, Green, Tao and Ziegler]

by Julia WOLF

1. INTRODUCTION

In 2004 Green and Tao [25] proved the following groundbreaking result.

Theorem 1 (Green-Tao theorem). — The primes contain arbitrarily long arithmetic
progressions. Moreover, the same is true of any subset of the primes of positive relative
density.(1)(2)

Theorem 1 vastly generalizes van der Corput’s result [11] that there are infinitely
many 3-term arithmetic progressions in the primes, as well as a significant strength-
ening due to Green [22], which established the existence of 3-term progressions in any
subset of the primes of positive relative density. It also represents a special case of a
conjecture by Erdős and Turán [12], dating back to 1936.

Conjecture 2 (Erdős-Turán conjecture). — Any subset X ⊆ N satisfying∑
x∈X

1

x
= +∞

contains arbitrarily long arithmetic progressions.

What is truly remarkable about Theorem 1 is the diversity of methods which
are brought together in its proof: it combines tools from arithmetic combinatorics
(especially so-called higher-order Fourier analysis) with traditional analytic number

(1) It is easy to see that the primes cannot contain an infinite arithmetic progression. Suppose that
P (j) = a + jd for some a, d ∈ N takes prime values for j = 0, 1, . . . , k. Then P (a) ≡ 0 mod a and
P (a) > a. But if P (a) = ma for some integer m > 1, it is no longer prime and hence k < a.
(2) The longest currently known arithmetic progression in the primes, 43 142 746 595 714 191 +

23 681 770 × 223 092 870 × j, where j = 0, 1, . . . 25, was found by Périchon with software by
Wróblewski and Reynolds in 2010.
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theory, all while taking inspiration from ergodic theory. The Erdős-Turán conjecture
suggests that the existence of arithmetic structure in the primes is in fact merely a
consequence of their density, and so it is perhaps not surprising that analytic and
combinatorial (rather than classical number-theoretic) methods should play a major
role. Indeed, in 1975 Szemerédi [47] showed in a purely combinatorial fashion that any
subset of the integers of positive upper density contains arbitrarily long arithmetic
progressions.(3) Denoting by [N ] the set of integers {1, 2, . . . , N}, we have the following
finitary version of this statement.

Theorem 3 (Szemerédi’s theorem). — Suppose that A ⊆ [N ] is a subset of density
α which contains no k-term arithmetic progressions. Then

α = ok(1),

where ok(1) is a quantity that tends to zero as N tends to infinity.

However, our current understanding of the decay rate of α does not allow us to
immediately deduce Theorem 1. Indeed, the best known bound on the density of a
subset of [N ] that contains no 3-term progressions, due to recent work of Sanders
[43], is of the form (logN)−(1−o(1)), falling just short of the density of the primes. For
longer progressions, the discrepancy is much more alarming. For length 4, the best
known bound on α is of the form exp(−c

√
log logN) [26], while for longer progressions

it is (log logN)−c for some small positive constant c depending on k [17]. On the
other hand, the best known example of a 3-term progression free set has density
exp(−c

√
logN) [3], which is believed by many to be closer to the truth. However,

proving upper bounds of this shape seems very much out of reach of currently available
techniques (but see a recent result of Schoen and Shkredov [46]).

Many excellent expository articles have been written on the proof of the Green-Tao
theorem [23, 36, 48]; in particular, it was covered in the Séminaire Bourbaki in 2005
by Bernard Host [33]. In contrast to Host’s ergodic theoretic perspective we adopt a
more analytic viewpoint in the present exposition. Moreover, our main focus will be
on the developments that have taken place since the original proof of the Green-Tao
theorem, which have brought new understanding and a number of additional exciting
results to the subject.

Shortly after the proof of Theorem 1, Green and Tao [31] extended their result
from arithmetic progressions to solutions of more general systems of linear equations
in the primes. This work covered essentially all systems of linear equations for which
the conclusion is neither trivially false nor known to be extremely difficult (such as
those systems related to Goldbach’s conjecture or the twin primes problem), but was

(3) A qualitative proof was given by Furstenberg [14] in 1977 and initiated the long-standing and
fruitful interaction between combinatorics and ergodic theory.
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conditional on two conjectures: the inverse conjecture for the uniformity norms, and
the Möbius nilsequences conjecture. The latter was established by Green and Tao [28]
shortly afterwards, and the former very recently by the same authors in joint work
with Ziegler [30]. With the completion of this very substantial research programme
the authors are able to assert not only the existence of general linear patterns in the
primes, but give precise asymptotics for their frequency in the interval [N ].

In a further step towards generalization, Tao and Ziegler [50] proved in 2008 that
the primes contain arbitrarily long polynomial progressions.

Theorem 4 (Tao-Ziegler theorem). — Given polynomials P1, . . . , Pk ∈ Z[m] such
that P1(0) = · · · = Pk(0) = 0, there exist infinitely many integers x,m such that
x+ P1(m), . . . , x+ Pk(m) are simultaneously prime. Moreover, the same is true of
any subset of the primes of positive relative density.

The first non-trivial example of such a polynomial pattern is a configuration con-
sisting of two elements that differ by a square, which corresponds to P1(m) = 0,
P2(m) = m2. In dense subsets of the integers the existence of such a configuration
is guaranteed by a theorem of Sárközy [45], which is obtained using a sophisticated
application of the circle method. In fact, and in contrast with the situation for 3-term
arithmetic progressions described above, the best known bound in Sárközy’s theorem
is strong enough to directly imply the existence of square differences in any positive-
density subset of the primes. In the case of more general polynomial configurations,
however, the results from arithmetic combinatorics are very far from implying a state-
ment resembling that of Theorem 4. Worse, there is currently no quantitative theorem
at all in the literature asserting that if a subset A ⊆ [N ] is dense enough, then it
contains a polynomial configuration of the above type.(4) (5) What we do have is a
qualitative polynomial Szemerédi theorem due to Bergelson and Leibman [6] proved
by ergodic theoretic methods, whose statement is fundamental to the proof of The-
orem 4. Moreover, Tao and Ziegler rely heavily on an induction technique which
allowed Bergelson and Leibman to linearize a system of polynomials in successive
stages, known as PET induction [4].

The general strategy of proof for Theorem 4 is largely the same as in the case of
(linear) arithmetic progressions. There are two main novelties here: first, a transfer-
ence principle is explicitly formulated for the first time, which was implicit in and
absolutely fundamental to the proof of the Green-Tao theorem. Roughly speaking,
the problem is that the von Mangoldt function (a weighted indicator function of the

(4) A paper by Green [21], which proves the existence of a 3-term progression whose common differ-
ence is a sum of two squares in any dense subset of the integers, may be regarded as an exception.
(5) There are, however, colouring results of this type, see the combinatorial proof of the polynomial
van der Waerden theorem by Walters [54].
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primes) is unbounded, while the quantitative techniques from arithmetic combina-
torics only apply to bounded functions. However, it turns out that the von Mangoldt
function can be majorized by a so-called pseudorandom measure which is quite well-
behaved. In particular, it can be shown that many statements involving truly bounded
functions hold also, by transference, for functions that are bounded by this pseudoran-
dom measure. The transference principle has received significant simplifications and a
new conceptual context through work done by Gowers [18], and it is this more recent
viewpoint that we shall adopt in our exposition. A similar approach was independently
discovered by Reingold, Trevisan, Tulsiani and Vadhan [40] in theoretical computer
science, where the transference principle is known as the dense model theorem and
has found several applications in the context of complexity theory.

The second novelty concerns a new family of norms. In his work on Szemerédi’s
theorem, Gowers [17] introduced the Uk norms, often called uniformity norms or
Gowers norms, and showed that the (k + 1)-term progression count of a function is
approximately invariant under small perturbations in the Uk norm – in other words,
the uniformity norms control long arithmetic progressions. This raises the question of
what can be said about functions that are large in the Uk norm, which is answered by
the so-called inverse theorem. It is one of the central results in arithmetic combina-
torics (although for k > 3, its strong form was only a conjecture until very recently)
and states, roughly speaking, that if the Uk norm of a function is large, then the func-
tion correlates with a polynomial structure of degree k − 1.(6) The inverse theorem,
together with the above-mentioned approximate invariance under small perturbations
in the Uk norm, is essentially sufficient to prove Szemerédi’s theorem.

It is not too difficult to see that the uniformity norms are not sufficient for control-
ling polynomial configurations. To put it very simply, the reason is that in a linear
configuration such as x, x+d, x+ 2d, which defines a 3-term progression, the range of
both variables x and d is essentially linear in N . In contrast, in a configuration such
as x, x+m2, which represents a square difference, the range of m has to be restricted
to
√
N . Dealing with smaller parameter ranges required Tao and Ziegler to introduce

new local uniformity norms, and study some of their properties.
To conclude this section we give a brief overview of the structure of this paper. In

Section 2 we define the uniformity norms and develop some of the fundamental no-
tions of higher-order Fourier analysis, following Gowers’s harmonic analysis approach
to Szemerédi’s theorem. In Section 3 we show how one uses the existence of a pseu-
dorandom measure and the transference principle together with Szemerédi’s theorem
to obtain the Green-Tao theorem on arithmetic progressions in the primes. Finally, in

(6) The uniformity norms have also appeared in the context of ergodic theory. A deep result of Host
and Kra [34] on the structure of characteristic factors for certain multiple ergodic averages is in some
sense analogous to the above-mentioned inverse theorem.
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