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COST AND DIMENSION OF WORDS
OF ZERO TOPOLOGICAL ENTROPY
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Abstract. — The (factor) complexity of a language L is defined as a function pL(n)
which counts for each n the number of words in L of length n. We are interested
in whether L is contained in a finite product of the form Sk, where S is a language
of strictly lower complexity. In this paper, we focus on languages of zero topological
entropy, meaning lim supn→∞ log pL(n)/n = 0. We define the α-dimension of a lan-
guage L as the infimum of integer numbers k such that there exists a language S of
complexity O(nα) such that L ⊆ Sk. We then define the cost c(L) as the infimum of
all real numbers α for which the α-dimension of L is finite. In particular, the above
definitions apply to the language of factors of an infinite word. In the paper, we search
for connections between the complexity of a language (or an infinite word) and its
dimension and cost, and show that they can be rather complicated.
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Résumé (Coût et dimension des mots d’entropie topologique nulle). — La complexité
d’un langage L est définie comme la fonction pL(n) qui compte le nombre de mots de
longueur n dans L. Nous nous intéressons à savoir si L est contenu dans un produit
fini de la forme Sk, où S est un langage de complexité strictement inférieure. Dans
cet article, nous considérons des langages d’entropie topologique nulle, c’est-à-dire
lim supn→∞ log pL(n)/n = 0. Nous définissons l’α-dimension d’un langage L comme
la borne inférieure des nombres entiers k tels qu’il existe un langage S de complexité
O(nα) avec L ⊆ Sk. Nous définissons ensuite le coût c(L) comme la borne inférieure
de tous les nombres réels α pour lesquels l’α-dimension de L est finie. En particulier,
les définitions ci-dessus s’appliquent au langage des facteurs d’un mot infini. Dans
l’article, nous cherchons les liens entre la complexité d’un langage (ou d’un mot infini)
et sa dimension et son coût, et montrons qu’ils peuvent être assez compliqués.

1. Introduction

Consider a finite non-empty set A called an alphabet. The complexity or
factor complexity px(n) of an infinite word x = x0x1x2 · · · ∈ AN is the number
of distinct blocks xixi+1 · · ·xi+n−1 ∈ An of length n occurring in x. First in-
troduced by Hedlund and Morse in 1938 [7] under the name block growth, the
factor complexity provides a useful measure of randomness of x or of the sub-
shift it generates. In particular, periodic words have bounded factor complexity
while digit expansions of normal numbers, by the definition of normality, have
maximal complexity.

The set A∗ of all finite words over the alphabet A is naturally a free monoid
under the operation of concatenation, with the empty word ε playing the role
of the identity. Given a language L ⊆ A∗ (for instance the language Fac(x)
consisting of all factors of some infinite word x ∈ AN) one may ask whether L
is contained in a finite product of the form Sk, where S is a language of strictly
lower complexity, that is, whether each word from L can be represented as a
concatenation of at most k words from S. The starting point of this paper is
the following characterisation of infinite words x ∈ AN of sub-linear complexity
obtained by the authors in [3]:

Theorem 1.1. — An infinite word x ∈ AN is of sub-linear complexity (i.e.,
px(n) = O(n)) if and only if Fac(x) ⊆ S2 for some language S ⊆ A∗ of bounded
complexity (i.e., lim sup pS(n) < +∞).

Our aim here is to express and study these ideas in greater generality, for
words and languages of higher but still low complexity. Given a language
L ⊆ A∗, we define the cost of L, denoted c(L), as the infimum of all real
numbers α for which there exists a language S with pS(n) = O(nα) and a
positive integer k such that L ⊆ Sk.

More precisely, for each real number α ∈ [0,+∞), denote by L(α) the col-
lection of all languages L ⊆ A∗ whose complexity satisfies pL(n) = O(nα). For
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example, if x is an infinite word and L = Fac(x), then, by the Morse-Hedlund
theorem [7], L belongs to L(0) if and only if x is ultimately periodic. If the
complexity of x is linear, then L belongs to L(1), if the complexity is bounded
by cn2, L belongs to L(2), and so on.

Now we define the α-dimension dα(L) by

dα(L) = inf{k ≥ 1 |L ⊆ Sk for some language S ∈ L(α)},
and then the cost c(L) is given by

c(L) = inf{α ∈ [0,+∞) | dα(L) < +∞}.
In each case above we take the convention that inf ∅ = +∞. If c = c(L) < +∞,
then we call dc(L) ∈ {1, 2, 3, . . .} ∪ {+∞} the cost dimension of L. In the case
of L = Fac(x) for some infinite word x, then we write c(x) (dc(x), respectively)
in lieu of c(L) (dc(L), respectively). Thus, the Morse-Hedlund theorem states
that an infinite word x ∈ AN is ultimately periodic if and only if c(x) = 0
and d0(x) = 1, i.e., x is of cost equal to 0 and cost dimension equal to 1.
Similarly, Theorem 1.1 together with the Morse-Hedlund theorem asserts that
x is of linear complexity (i.e., px(n) = Θ(n)) if and only if x is of cost equal
to 0 and cost dimension equal to 2. The above definitions may be adapted to
other measures of complexity as we do herein for the so-called accumulative
complexity p∗L(n) which counts the number of words in L of length less than or
equal to n.

A fundamental question, to which a substantial portion of the paper is de-
voted, is: To what extent does the complexity of a language determine its cost
and cost dimension and vice versa? A first basic observation is that languages
L of positive entropy lim supn→+∞

log pL(n)
n have cost equal to +∞. For this

reason we restrict our attention to languages and words of zero topological en-
tropy lim supn→+∞

log pL(n)
n = 0. Moreover, as we show by a straightforward

argument in Proposition 3.9, c(L) is finite if and only if the complexity of L is
bounded above by a polynomial.

Then, in Proposition 3.12, for each positive integer k ≥ 1 we construct
an infinite word x of complexity px(n) = Ω(nk−1) with d0(x) = k. In other
words, we establish the existence of words of cost zero and of arbitrarily high
polynomial complexity.

Conversely, given the complexity of a language, what can be said of its cost
and cost dimension? Despite the Morse-Hedlund theorem and Theorem 1.1, in
general, the cost and cost dimension of a given language depend only in part on
its complexity. For instance, languages not closed under taking factors are in
general very far from satisfying any result along the lines of Theorem 1.1 (see
the last proposition in [3]), but even in the case of languages defined by infinite
words, the characterisation of Theorem 1.1 does not seem to extend in an
obvious way to higher complexities. For instance, we prove in Theorem 5.1 that
the word x =

∏+∞
i=1 ab

i = ababbabbb · · · , of complexity px(n) = Θ(n2), verifies
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d0(u) > 3. On the other hand, in the same theorem we show that d0(x) ≤ 6,
which in particular implies it is of cost zero. We do not know whether there
exist words of quadratic complexity and positive cost. However, we prove in
Theorem 6.1 that for every real number α ∈ (0, 1) there exists an infinite word
x with complexity px(n) = O(n2+α) and cost c(x) ≥ α. In other words, there
exist words of positive cost and of complexity growing just a bit faster than
quadratically. This should be contrasted with the result mentioned earlier on
the existence of words of arbitrarily high polynomial complexity having cost
equal to zero. These results suggest that the cost of a word measures something
beyond its factor complexity which makes it of independent interest.

Some of the results of the paper have been presented at the 2014 MFCS
conference [4].

2. Preliminaries

In this section we briefly recall some basic definitions and notations concern-
ing finite and infinite words which are relevant to the subsequent sections. For
more details we refer the reader to [6].

Let A be a finite non-empty set (the alphabet). Let A∗ (AN) denote the set of
all finite (right infinite) words u = u0u1 · · ·un−1(· · · ) with ui ∈ A. The length
n of a finite word u is denoted by |u|. The empty word is denoted ε and by
convention |ε| = 0. We put A+ = A∗ \ {ε}. For each u ∈ A∗ and a ∈ A, we let
|u|a denote the number of occurrences of a in u. The set of factors of a finite
or infinite word u is defined by

Fac(u) = {ui · · ·uj | 0 ≤ i ≤ j} ∪ {ε},
where j < |u| if u is finite. The factor ui . . . uj can be also denoted by u[i..j].

A subset L ⊆ A∗ is called a language. A language L is said to be factorial
if Fac(u) ⊆ L for each u ∈ L. The complexity pL of a language L ⊆ A∗ is
defined by pL(n) = Card(L∩An); its accumulative complexity p∗L is defined by
p∗L(n) =

∑n
i=0 pL(i). For a finite of infinite word x, the complexity (accumula-

tive complexity) of Fac(x) is denoted simply by px(n) (respectively, p∗x(n)).
We say that x ∈ AN (resp., L ⊆ A∗) is of bounded complexity if there exists

a positive integer C such that px(n) ≤ C (resp., pL(n) ≤ C) for all n ∈ N.
An infinite word x is called ultimately periodic, or ultimately |v|-periodic, if
x = uvvv · · · = uvω for some words u ∈ A∗ and v ∈ A+. An infinite word is
said to be aperiodic if it is not ultimately periodic. A factor u of x is called right
(resp., left) special if ua, ub ∈ Fac(x) (resp., au, bu ∈ Fac(x)) for some distinct
letters a, b ∈ A. It follows that every aperiodic word contains a right and a left
special factor of each length. An infinite word x is said to be recurrent if each
prefix of x occurs infinitely often in x.

Analogously we can consider bi-infinite words indexed by Z. The definitions
above extend in the obvious ways. In particular, a bi-infinite word x is said to
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be ultimately periodic if it is ultimately periodic to both the left and the right,
i.e., if x admits a prefix of the form · · ·uuu and a suffix of the form vvv · · · for
some u, v ∈ A+. Otherwise x is said to be aperiodic.

3. Dimension and cost: definitions, examples and general properties

For each real number α ∈ [0,+∞), we let L(α) (resp., L∗(α)) denote the
collection of languages L ⊆ A∗ (over some finite non-empty alphabet A) with
pL(n) = O(nα) (resp., p∗L(n) = O(nα)). Analogously, we let W(α) (resp.,
W∗(α)) denote the collection of infinite words x ∈ AN (over some finite non-
empty alphabet A) such that Fac(x) ∈ L(α) (resp., Fac(x) ∈ L∗(α)). For each
S ⊆ A∗, the set Sk denotes the set of all concatenations of k elements of S.

Definition 3.1. — Let L ⊆ A∗. For each real number α ∈ [0,+∞), we define
the α-dimension dα(L) by

dα(L) = inf{k ≥ 1 | ∃S ∈ L(α) : L ⊆ Sk},

and the cost c(L) by

c(L) = inf{α ∈ [0,+∞) | dα(L) < +∞}.

If c = c(L) < +∞, we call dc(L) ∈ [1,+∞] the cost dimension of L.

By convention inf ∅ = +∞. Definition 3.1 extends naturally to infinite words
x ∈ AN by replacing L by Fac(x) so we define accordingly dα(x) and c(x).
Replacing L(α) by L∗(α) we define analogously the α-accumulative dimension
d∗α(L) and the accumulative cost c∗(L).

We observe that in our definition of dα(L), we may replace Sk by S1 · · ·Sk
for some languages S1, . . . , Sk ∈ L(α). The following lemma is an immediate
consequence of the definition:

Lemma 3.2. — Suppose L ∈ L(α0) (resp., L ∈ L∗(α0)) for some α0 ≥ 0. Then
dα(L) = 1 (resp., d∗α(L) = 1) for each α ≥ α0 and hence c(L) ≤ α0 (resp.,
c∗(L) ≤ α0).

Lemma 3.3. — For each language L ⊆ A∗, we have d0(L) = 1 if and only if L
is of bounded complexity. For each infinite word x ∈ AN, we have d0(x) = 1 if
and only if x is ultimately periodic.

Proof. — The first statement is clear from Definition 3.1. As for the second,
if x is ultimately periodic, then its complexity is bounded, whence d0(x) = 1.
Conversely if d0(x) = 1, then the complexity of x is bounded, and hence by the
Morse-Hedlund theorem x is ultimately periodic. �
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