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AN INVITATION TO RANDOM

SCHRÖDINGER OPERATORS

by

Werner Kirsch

with an Appendix by Frédéric Klopp

Abstract. – These lecture notes try to give some of the basics of random Schrödinger

operators. They are meant for nonspecialists and require only minor previous knowl-

edge about functional analysis and probability theory. Nevertheless this survey in-

cludes complete proofs of Lifshitz tails and Anderson localization. An appendix writ-

ten by F. Klopp is devoted to the Aizenman-Molchanov proof of Anderson localiza-

tion.

Résumé (Une invitation aux opérateurs de Schrödinger aléatoires). – Ces notes essayent de

présenter les bases de la théorie des opérateurs de Schrödinger aléatoires. Elles sont

destinées à un public très large et ne requièrent que des connaissances minimales

en analyse fonctionnelle et en théorie des probabilités. Néanmoins, on y donne une

démonstration complète des asymptotiques de Lifshitz et de la localisation d’Ander-

son. Ces notes ont été augmentées d’un appendice écrit par F. Klopp, appendice

présentant une preuve de la localisation d’Anderson suivant les idées d’Aizenman et

Molchanov.

1. Preface

In these lecture notes I try to give an introduction to (some part of) the basic
theory of random Schrödinger operators. I intend to present the field in a rather self
contained and elementary way. It is my hope that the text will serve as an introduction
to random Schrödinger operators for students, graduate students and researchers who
have not studied this topic before. If some scholars who are already acquainted with
random Schrödinger operators might find the text useful as well I will be even more
satisfied.

Only a basic knowledge in Hilbert space theory and some basics from probability

2000 Mathematics Subject Classification. – 82B44, 35J10, 47B80, 60H25, 81Q10.

Key words and phrases. – Random Schrödinger operators, Anderson localization, density of states,

Lifshitz asymptotics.

© Panoramas et Synthèses 25, SMF 2008
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theory are required to understand the text (see the Notes below). I have restricted the
considerations in this text almost exclusively to the Anderson model, i.e. to random
operators on the Hilbert space `

2(Zd). By doing so I tried to avoid many of the
technical di�culties that are necessary to deal with in the continuous case (i.e. on
L

2(Rd)). Through such technical problems sometimes the main ideas become obscured
and less transparent.

The theory I present is still not exactly easy sta↵. Following Einstein’s advice, I
tried to make things as easy as possible, but not easier.

The author has to thank many persons. The number of colleagues and friends I
have learned from about mathematical physics and especially disordered systems is
so large that it is impossible to mention a few without doing injustice to many others.
A lot of the names can be found as authors in the list of references. Without these
persons the writing of this review would have been impossible.

A colleague and friend I have to mention though is Frédéric Klopp who organized a
summer school on Random Schrödinger operators in Paris in 2002. My lectures there
were the starting point for this review. I have to thank Frédéric especially for his
enormous patience when I did not obey the third, forth, . . . , deadline for delivering
the manuscript.

It is a great pleasure to thank Bernd Metzger for his advice, for many helpful dis-
cussions, for proofreading the manuscript, for helping me with the text and especially
with the references and for many other things.

Last, not least I would like to thank Jessica Langner, Riccardo Catalano and Hen-
drik Meier for the skillful typing of the manuscript, for proofreading and for their
patience with the author.

Notes and Remarks. – For the spectral theory needed in this work we recommend
[107] or [131]. We will also need the min-max theorem (see [105]).

The probabilistic background we need can be found e.g. in [88] and [87].

For further reading on random Schrödinger operators we recommend [69] for the
state of the art in multiscale analysis. We also recommend the textbook [121]. A
modern survey on the density of states is [62].

2. Introduction: Why random Schrödinger operators?

2.1. The setting of quantum mechanics. – A quantum mechanical particle moving in
d-dimensional space is described by a vector  in the Hilbert space L

2(Rd). The time
evolution of the state  is determined by the Schrödinger operator

(2.1) H = H0 + V
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acting on L
2(Rd). The operator H0 is called the free operator . It represents the kinetic

energy of the particle. In the absence of magnetic fields it is given by the Laplacian

(2.2) H0 = �
~2

2m
� = �

~2

2m

dX

⌫=1

@
2

@x⌫
2 .

The physics of the system is encoded in the potential V which is the multiplication
operator with the function V (x) in the Hilbert space L

2(Rd). The function V (x) is
the (classical) potential energy. Consequently, the forces are given by

F (x) = �rV (x).

In the following we choose physical units in such a way that ~2

2m
= 1 since we are

not interested in the explicit dependence of quantities on ~ or m. The time evolution
of the state  is obtained from the time dependent Schrödinger equation

(2.3) i
@

@t
 = H  .

By the spectral theorem for self adjoint operators equation (2.3) can be solved by

(2.4)  (t) = e
�itH

 0

where  0 is the state of the system at time t = 0.

To extract valuable information from (2.4) we have to know as much as possible
about the spectral theory of the operator H and this is what we try to do in this text.

2.2. Random Potentials. – In this review we are interested in random Schrödinger
operators. These operators model disordered solids. Solids occur in nature in various
forms. Sometimes they are (almost) totally ordered. In crystals the atoms or nuclei
are distributed on a periodic lattice (say the lattice Zd for simplicity) in a completely
regular way. Let us assume that a particle (electron) at the point x 2 Rd feels a
potential of the form q f(x� i) due to an atom (or ion or nucleus) located at the point
i 2 Zd. Here, the constant q, the charge or coupling constant in physical terms, could
be absorbed into the function f . However, since we are going to vary this quantity
from atom to atom later on, it is useful to write the potential in the above way. Then,
in a regular crystal our particle is exposed to a total potential

V (x) =
X

i2Zd

q f(x� i).(2.5)

We call the function f the single site potential to distinguish it from the total
potential V . The potential V in (2.5) is periodic with respect to the lattice Zd, i. e.
V (x� i) = V (x) for all x 2 Rd and i 2 Zd. The mathematical theory of Schrödinger
operators with periodic potentials is well developed (see e.g. [34], [105] ). It is based
on a thorough analysis of the symmetry properties of periodic operators. For example,
it is known that such operators have a spectrum with band structure, i.e. �(H) =
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n=0[an, bn] with an < bn  an+1. This spectrum is also known to be absolutely
continuous.

Most solids do not constitute ideal crystals. The positions of the atoms may deviate
from the ideal lattice positions in a non regular way due to imperfections in the
crystallization process. Or the positions of the atoms may be completely disordered
as is the case in amorphous or glassy materials. The solid may also be a mixture of
various materials which is the case for example for alloys or doped semiconductors. In
all these cases it seems reasonable to look upon the potential as a random quantity.

For example, if the material is a pure one, but the positions of the atoms deviate
from the ideal lattice positions randomly, we may consider a random potential of the
form

(2.6) V!(x) =
X

i2Zd

q f (x� i� ⇠i(!)) .

Here the ⇠i are random variables which describe the deviation of the “i
th” atom

from the lattice position i. One may, for example assume that the random variables
⇠i are independent and identically distributed. We have added a subscript ! to the
potential V to make clear that V! depends on (unknown) random parameters.

To model an amorphous material like glass or rubber we assume that the atoms
of the material are located at completely random points ⌘i in space. Such a random
potential may formally be written as

(2.7) V!(x) =
X

i2Zd

q f(x� ⌘i).

To write the potential (2.7) as a sum over the lattice Zd is somewhat misleading,
since there is, in general, no natural association of the ⌘i with a lattice point i. It is
more appropriate to think of a collection of random points in Rd as a random point
measure. This representation emphasizes that any ordering of the ⌘i is completely
artificial.

A counting measure is a Borel measure on Rd of the form ⌫ =
P

x2M
�x with a

countable set M without (finite) accumulation points. By a random point measure we
mean a mapping ! 7! µ!, such that µ! is a counting measure with the property that
the function ! 7! µ!(A) is measurable for any bounded Borel set A. If ⌫ = ⌫! is the
random point measure ⌫ =

P
i
�⌘i then (2.7) can be written as

V!(x) =

Z

Rd

q f(x� ⌘) d⌫(⌘).(2.8)

The most frequently used example of a random point measure and the most im-
portant one is the Poisson random measure µ!. Let us set nA = µ!(A), the number
of random points in the set A. The Poisson random measure can be characterized by
the following specifications
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– The random variables nA and nB are independent for disjoint (measurable) sets
A and B.

– The probability that nA = k is equal to |A|
k

k! e
�|A|, where |A| is the Lebesgue

measure of A.

A random potential of the form (2.8) with the Poisson random measure is called
the Poisson model.

The most popular model of a disordered solid and the best understood one as well
is the alloy-type potential (see (2.9) below). It models an unordered alloy, i.e. a mixture
of several materials the atoms of which are located at lattice positions. The type of
atom at the lattice point i is assumed to be random. In the model we consider here
the di↵erent materials are described by di↵erent charges (or coupling constants) qi.
The total potential V is then given by

(2.9) V!(x) =
X

i2Zd

qi(!) f(x� i).

The qi are random variables which we assume to be independent and identically
distributed. Their range describes the possible values the coupling constant can as-
sume in the considered alloy. The physical model suggests that there are only finitely
many values the random variables can assume. However, in the proofs of some results
we have to assume that the distribution of the random variables qi is continuous (even
absolutely continuous) due to limitations of the mathematical techniques. One might
argue that such an assumption is acceptable as a purely technical one. On the other
hand one could say we have not understood the problem as long as we can not handle
the physically relevant cases.

For a given ! the potential V!(x) is a pretty complicated “normal” function. So,
one may ask: What is the advantage of “making it random”?

With the introduction of random variables we implicitly change our point of view.
From now on we are hardly interested in properties of H! for a single given !. Rather,
we look at “typical” properties of H!. In mathematical terms, we are interested in
results of the form: The set of all ! such that H! has the property P has probability
one. In short: P holds for P-almost all ! (or P-almost surely). Here P is the probability
measure on the underlying probability space.

In this course we will encounter a number of such properties. For example we will
see that (under weak assumptions on V!), there is a closed, nonrandom (!) subset ⌃ of
the real line such that ⌃ = �(H!), the spectrum of the operator H!, P-almost surely.

This and many other results can be proven for various types of random Schrödinger
operators. In this lecture we will restrict ourselves to a relatively simple system known
as the Anderson model. Here the Hilbert space is the sequence space `2(Zd) instead of
L

2(Rd) and the free operator H0 is a finite-di↵erence operator rather than the Lapla-
cian. We will call this setting the discrete case in contrast to Schrödinger operators
on L

2(Rd) which we refer to as the continuous case. In the references the reader may
find papers which extend results we prove here to the continuous setting.
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