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CLASSICAL MOTIVES AND MOTIVIC L-FUNCTIONS

by

Minhyong Kim

The exposition here follows the lecture delivered at the summer school, and hence,
contains neither precision, breadth of comprehension, nor depth of insight. The goal
rather is the curious one of providing a loose introduction to the excellent intro-
ductions that already exist, together with scattered parenthetical commentary. The
inadequate nature of the exposition is certainly worst in the third section. As a rem-
edy, the article of Schneider [39] is recommended as a good starting point for the
complete novice, and that of Nekovář [36] might be consulted for more streamlined
formalism. For the Bloch-Kato conjectures, the paper of Fontaine and Perrin-Riou
[19] contains a very systematic treatment, while Kato [26] is certainly hard to surpass
for inspiration. Kings [29], on the other hand, gives a nice summary of results (up to
2003).

1. Motivation

Given a variety X over Q, it is hoped that a suitable analytic function

⇣(X, s),

a ⇣-function of X, encodes important arithmetic invariants of X. The terminology of
course stems from the fundamental function

⇣(Q, s) =
1X

n=1

n
�s

named by Riemann, which is interpreted in this general context as the zeta function of
Spec(Q). A general zeta function should generalize Riemann’s function in a manner
similar to Dedekind’s extension to number fields. Recall that the latter can be defined
by replacing the sum over positive integers by a sum over ideals:

⇣(F, s) =
X

I

N(I)�s
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where I runs over the non-zero ideals of the ring of integers OF and N(I) = | OF /I|,
and that ⇣(F, s) has a simple pole at s = 1 (corresponding to the trivial motive factor
of Spec(F ), as it turns out) with

(s� 1)⇣(F, s)|s=1 =
2r1(2⇡)r2hF RF

wF

p
|DF |

By the unique factorization of ideals, ⇣(F, s) can also be written as an Euler product
Y

P

(1�N(P)�s)�1

as P runs over the maximal ideals of OF , that is, the closed points of Spec( OF ). Now,
if a scheme Y is of finite type over Z, then for any closed point y 2 Y, its residue field
k(y) is finite. Write N(y) := |k(y)|. We can then form an Euler product [40]

Z(Y, s) :=
Y

y2 Y0

(1�N(y)�s)�1
,

where (·)0 denotes the set of closed points for any scheme (·). In the case when the
map

Y!Spec(Z)

factors through Spec(Fp), Z(Y, s) reduces to Weil’s zeta function for a variety over
a finite field (with the substitution p

�s 7! t if a formal variable has intervened as in
[40], section 1.6).

When we are starting with X/Q, which we assume throughout to be proper and
smooth, a straightforward imitation of Dedekind’s definition might involve taking an
integral model X of X, which is a proper flat scheme of finite-type over Z with X as
generic fiber, and defining

⇣(X, s)“ := ”Z( X , s) =
Y

x2 X0

(1�N(x)�s)�1

The problem with this approach is that the function thus obtained will depend on the
model, and there is no general method for choosing a canonical one. However, there
will be some set S of primes such that there is a model XS over Spec(Z[1/S]) which
is furthermore smooth. Even though such a Z[1/S]-model need be no more canonical,
it does turn out that the incomplete zeta function

⇣S(X, s) :=
Y

x2( XS)0

(1�N(x)�s)�1

is independent of the model. (More on this point below.) So there are good elementary
generalizations of incomplete zeta functions. We note in this connection that

Z( X , s) =
Y

p

Z( Xp, s)

where
Xp = X ⌦ Fp
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is the reduction of X modulo p, so that that

⇣S(X, s) =
Y

p/2S

Z( Xp, s)

is the result of deleting a few Euler factors. Thus, the problem of defining a canonical
zeta function becomes one of inserting canonical factors for the primes of bad reduc-
tion. It is not impossible that there is a theory of integrals models that isolates a
class that is canonical enough to yield a good definition of ⇣(X, s). But the current
approach proceeds instead to break up partial zeta functions into natural factors

⇣S(X, s) =
Y

LS(Mi, s)
±1

,

according to the way X is decomposed into constituent motives {Mi} in a suitable
category. (It is not much of an exaggeration to say that the decomposition of zeta
functions is the main empirical phenomenon leading to the hypothesis of a category
of motives.) The incomplete L-functions LS(Mi, s) of the Mi should then encode
arithmetic invariants of the Mi, which, in turn, refine the arithmetic invariants of X.
It is believed that good analytic properties must be established to access the invariants
e�ciently, including functional equations. This, in turn, requires us to complete the
L-functions using cohomological machinery in general. The completed L-functions
then will lead to a completed zeta function.

A simple illustration is provided by the elementary example of an elliptic curve
E/Q with a�ne equation

y
2 + a1xy + a3y = x

3 + a2x
2 + a4x + a6

Let ES be a smooth and proper Z[1/S] model. Then

⇣S(E, s) := Z( ES , s)

It is not very hard to check that

⇣S(E, s) = ⇣S(Q, s)⇣S(Q, s� 1)/LS(H1(E), s)

([42], V.2.4) illustrating the kind of decomposition alluded to above. Here

⇣S(Q, s) =
X

{(n,p)=1,8p2S}

n
�s =

Y

p/2S

(1� p
�s)�1

is a standard incomplete zeta function and

LS(H1(E), s) =
Y

p/2S

Lp(H
1(E), s)

is the incomplete L-function of E with factors defined by

Lp(H
1(E), s) =

1

1� app
�s + p1�2s

Here ap = p+1�Np and Np is the number of points on E mod p. LS(H1(E), s) turns
out to be the partial L-function corresponding to the motivic factor H

1(E) of E.
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We can put in Euler factors for p 2 S. It is obvious how to do it for ⇣S(Q, s)
and ⇣S(Q, s� 1) giving us the Riemann zeta function ⇣(Q, s) and its shift ⇣(Q, s� 1)
respectively. For the incomplete LS(H1(E), s), we put in the factors according to a
recipe determined by the reduction of E at p:

Lp(H
1(E), s) =

8
><

>:

1/(1� p
�s) split multiplicative;

1/(1 + p
�s) non-split multiplicative;

1 additive.

([43], II.10) and define

L(H1(E), s) :=
Y

p

Lp(H
1(E), s)

Here we have used the breakdown of the incomplete zeta function into three factors
as an aid in defining the full zeta function of E. However, this case is somewhat
misleading in that there is a canonical model that could have been used instead,
namely, the Weierstrass minimal model

E

that appears in basic textbooks. In fact, one can check that

⇣(E, s) = ⇣(Q, s)⇣(Q, s� 1)/L(H1(E), s) = Z( E, s)

as follows from the trace formula ([42], V.2) for the Frobenius map on elliptic curves
for p /2 S, and a much easier counting argument for p 2 S. So this would seem to be an
instance where the naive extension of Dedekind’s method works out. Nevertheless, we
explain how the bad factors can be obtained without reference to the model, starting
at this point to use the language of étale cohomology [34]. In the sequel, we fix an
algebraic closure Q̄ of Q, closures Q̄p of Qp, and embeddings Q̄,!Q̄p. Therefore, we
have embeddings of Galois groups

Gp := Gal(Q̄p/Qp),!G := Gal(Q̄/Q)

The residue field of Q̄p is an algebraic closure F̄p of Fp, and we have an exact sequence

0!Ip!Gp!Gal(F̄p/Fp)!0

defining the inertia subgroup Ip. Denote by Frp the generator of Gal(F̄p/Fp) that
takes x to x

1/p. Finally, Ēp denotes the base-change of Ep to F̄p and Ē the base-change
of E to Q̄. We need the étale cohomology

H
1(Ē, Ql)

for primes l, and

H
1( Ēp, Ql)

for l 6= p. By the Lefschetz trace formula ([34], VI.12.3),

Z( Ep, s) =
det([I � p

�s
Frp]|H1( Ēp, Ql))

det([I � p�sFrp]|H0( Ēp, Ql)) det([I � p�sFrp]|H2( Ēp, Ql))
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But for each i = 0, 1, 2,
H

i( Ēp, Ql) ' H
i(Ē, Ql)

Ip

the superscript referring to the subspace of elements fixed by the inertia action. (For
H

0 and H
2, this is an easy exercise. The H

1 case is slightly harder. See [34], proof of
theorem V.3.5. Although the discussion there is given for smooth surfaces fibered over
‘geometric’ curves, it is rather straightforward to adapt it to the present situation.)
For p /2 S, any pair X,! X as above satisfies

H
i( X̄p, Ql) ' H

i(X̄, Ql)

where the Ip-action must be trivial, and provides the reason that the incomplete zeta
function is independent of the model ([34], VI.4.1). In any case, it ends up that the
bad factor could have been written

Z( Ep, s) =
det([I � p

�s
Frp]|H1(Ē, Ql)Ip)

det([I � p�sFrp]|H0(Ē, Ql)Ip) det([I � p�sFrp]|H2(Ē, Ql)Ip)

in a way that refers only to E. It is this formula that generalizes to arbitrary motives.
Since we have thus far been entirely cavalier about convergence, we note in passing

that Hasse’s bound |ap|  2
p

p ([42], V.II) implies that the Euler product converges
for Re(s) > 3/2.

To control fine analytic properties, one establishes a relation to automorphic L-
functions. For elliptic curves such a relation can be made explicit by computing the
conductor

NE :=
Y

p2S

p
fp

Here
fp = ordp(�E) + 1�mE

where �E is the discriminant of E and mE is the number of geometric components
(that is, components over F̄p) of the special fiber of the Neron model of E. Even
though this formula for fp again refers to the model, it can be defined purely in terms
of the Galois action on H

1(Ē, Ql) ([43], IV.10).
The well-known and deep fact, established through the work of Wiles, Taylor-

Wiles, and Breuil-Conrad-Diamond-Taylor ([50], [49], [9]), is that L has an analytic
continuation to the complex plane. More precisely,

L(E, s) = L(fE , s) =
1

(2⇡)s�(s)

Z 1

0
fE(iy)ys�1

dy

=
1

(2⇡)s�(s)
[

Z 1

1/
p

NE

fE(iy)ys�1
dy + wE

Z 1

1/
p

NE

fE(iy)y1�s
dy]

for a normalized weight 2 new cusp form fE of level NE which is an eigenvector for
the Hecke operators, determined by a q-expansion

fE = q + a2q
2 + · · ·

where the ap have to be the same as those for E and the general coe�cient is deter-
mined by those with prime index. The number wE = ±1 in this formula is an intrinsic
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