LECTURES ON SHIMURA VARIETIES

by

Alain Genestier & Bao Châu Ngô

Abstract. – The main goal of these lectures is to explain the representability of the moduli space of abelian varieties with polarizations, endomorphisms and level structures, due to Mumford [13], and the description of the set of its points over a finite field, due to Kottwitz [9]. We also try to motivate the general definition of Shimura varieties and their canonical models as in the article of Deligne [5]. We will leave aside important topics like compactifications, bad reduction and the *p*-adic uniformization of Shimura varieties.

This is the notes of the lectures on Shimura varieties delivered by one of us in the Asia-French summer school organized at IHÉS in July 2006. It is basically based on the notes of a course delivered by the two of us in Université Paris-Nord in 2002.

 $R\acute{sum\acute{e}}$. – Le but principal de cet exposé est d'expliquer la représentabilité des espaces de modules de variétés abéliennes à travers les polarisations, endomorphismes et structures de niveau, due à Mumford [13] et la description de l'ensemble de ses points au-dessus d'un corps fini, due à Kottwitz [9]. Nous essayons également de motiver la définition générale des variétés de Shimura et de leurs modèles canoniques selon l'article de Deligne [5]. Nous laissons de côté des sujets importants comme les compactifications, la mauvaise réduction et l'uniformisation *p*-adique des variétés de Shimura.

Il d'agit de notes d'exposés sur les variétés de Shimura, donnés par l'un des auteurs lors de l'École d'été franco-asiatique organisée à l'IHÉS en juillet 2006. Ce texte est basé sur les notes d'un cours délivré par l'un des auteurs à l'université Paris-Nord en 2002.

1. Quotients of Siegel's upper half space

1.1. Review on complex tori and abelian varieties. – Let V denote a complex vector space of dimension n and U a lattice in V which is by definition a discrete subgroup of V of rank 2n. The quotient X = V/U of V by U acting on V by translation, is naturally equipped with a structure of compact complex manifold and a structure of abelian group.

Lemma 1.1.1. – We have canonical isomorphisms from $H^r(X, \mathbb{Z})$ to the group of alternating r-forms $\bigwedge^r U \to \mathbb{Z}$.

Proof. Since X = V/U with V contractible, $H^1(X, \mathbb{Z}) = Hom(U, \mathbb{Z})$. The cup-product defines a homomorphism

$$\bigwedge' \mathrm{H}^1(X,\mathbb{Z}) \to \mathrm{H}^r(X,\mathbb{Z})$$

which is an isomorphism since X is isomorphic to $(S_1)^{2n}$ as real manifolds (where $S_1 = \mathbb{R}/\mathbb{Z}$ is the unit circle).

Let L be a holomorphic line bundle over the compact complex variety X. Its Chern class $c_1(L) \in \mathrm{H}^2(X,\mathbb{Z})$ is an alternating 2-form on U which can be made explicit as follows. By pulling back L to V by the quotient morphism $\pi : V \to X$, we get a trivial line bundle since every holomorphic line bundle over a complex vector space is trivial. We choose an isomorphism $\pi^*L \to \mathcal{O}_V$. For every $u \in U$, the canonical isomorphism $u^*\pi^*L \simeq \pi^*L$ gives rise to an automorphism of \mathcal{O}_V which is given by an invertible holomorphic function

$$e_u \in \Gamma(V, \mathcal{O}_V^{\times}).$$

The collection of these invertible holomorphic functions for all $u \in U$, satisfies the cocycle equation

$$e_{u+u'}(z) = e_u(z+u')e_{u'}(z).$$

If we write $e_u(z) = e^{2\pi i f_u(z)}$ where $f_u(z)$ are holomorphic function well defined up to a constant in \mathbb{Z} , the above cocycle equation is equivalent to

$$F(u_1, u_2) = f_{u_2}(z + u_1) + f_{u_1}(z) - f_{u_1 + u_2}(z) \in \mathbb{Z}.$$

The Chern class

$$c_1: \mathrm{H}^1(X, \mathcal{O}_X^{\times}) \to \mathrm{H}^2(X, \mathbb{Z})$$

sends the class of L in $\mathrm{H}^1(X, \mathcal{O}_X^{\times})$ on the element $c_1(L) \in \mathrm{H}^2(X, \mathbb{Z})$ whose the corresponding 2-form $E : \bigwedge^2 U \to \mathbb{Z}$ is given by

$$(u_1, u_2) \mapsto E(u_1, u_2) := F(u_1, u_2) - F(u_2, u_1).$$

Lemma 1.1.2. – The Neron-Severi group NS(X), defined as the image of c_1 : $H^1(X, \mathcal{O}_X^{\times}) \to H^2(X, \mathbb{Z})$ consists of the alternating 2-form $E : \bigwedge^2 U \to \mathbb{Z}$ satisfying the equation

$$E(iu_1, iu_2) = E(u_1, u_2),$$

where E still denotes the alternating 2-form extended to $U \otimes_{\mathbb{Z}} \mathbb{R} = V$ by \mathbb{R} -linearity.

Proof. The short exact sequence

$$0 \to \mathbb{Z} \to \mathcal{O}_X^{\times} \to \mathcal{O}_X \to 0$$

induces a long exact sequence which contains

$$\mathrm{H}^{1}(X, \mathcal{O}_{X}^{\times}) \to \mathrm{H}^{2}(X, \mathbb{Z}) \to \mathrm{H}^{2}(X, \mathcal{O}_{X}).$$

It follows that the Neron-Severi group is the kernel of the map

$$\mathrm{H}^{2}(X,\mathbb{Z}) \to \mathrm{H}^{2}(X,\mathcal{O}_{X}).$$

This map is the composition of the obvious maps

$$\mathrm{H}^{2}(X,\mathbb{Z}) \to \mathrm{H}^{2}(X,\mathbb{C}) \to \mathrm{H}^{2}(X,\mathcal{O}_{X}).$$

The Hodge decomposition

$$\mathrm{H}^{m}(X,\mathbb{C}) = \bigoplus_{p+q=m} \mathrm{H}^{p}(X,\Omega_{X}^{q})$$

where Ω_X^q is the sheaf of holomorphic q-forms on X, can be made explicit [15, page 4]. For m = 1, we have

$$\mathrm{H}^1(X,\mathbb{C}) = V^*_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C} = V^*_{\mathbb{C}} \oplus \overline{V}^*_{\mathbb{C}} \,,$$

where $V_{\mathbb{C}}^*$ is the space of \mathbb{C} -linear maps $V \to \mathbb{C}$, $V_{\mathbb{C}}^*$ is the space of conjugate \mathbb{C} -linear maps and $V_{\mathbb{R}}^*$ is the space of \mathbb{R} -linear maps $V \to \mathbb{R}$. There is a canonical isomorphism $\mathrm{H}^0(X, \Omega_X^1) = V_{\mathbb{C}}^*$ defined by evaluating a holomorphic 1-form on X on the tangent space V of X at the origin. There is also a canonical isomorphism $\mathrm{H}^1(X, \mathcal{O}_X) = \overline{V}_{\mathbb{C}}^*$.

By taking \bigwedge^2 on both sides, the Hodge decomposition of $\mathrm{H}^2(X, \mathbb{C})$ can also be made explicit. We have $\mathrm{H}^2(X, \mathcal{O}_X) = \bigwedge^2 \overline{V}^*_{\mathbb{C}}$, $\mathrm{H}^1(X, \Omega^1_X) = V^*_{\mathbb{C}} \otimes \overline{V}^*_{\mathbb{C}}$ and $\mathrm{H}^0(X, \Omega^2_X) = \bigwedge^2 V^*_{\mathbb{C}}$. It follows that the map $\mathrm{H}^2(X, \mathbb{Z}) \to \mathrm{H}^2(X, \mathcal{O}_X)$ is the obvious map $\bigwedge^2 U^*_{\mathbb{Z}} \to \bigwedge^2 V^*_{\mathbb{C}}$. Its kernel is precisely the set of integral 2-forms E on U which satisfy the relation $E(iu_1, iu_2) = E(u_1, u_2)$ (when they are extended to V by \mathbb{R} -linearity). \Box

Let $E : \bigwedge^2 U \to \mathbb{Z}$ be an integral alternating 2-form on U satisfying $E(iu_1, iu_2) = E(u_1, u_2)$ after extension to V by \mathbb{R} -linearity. The real 2-form E on V defines a Hermitian form λ on the \mathbb{C} -vector space V by

$$\lambda(x, y) = E(ix, y) + iE(x, y)$$

which in turn determines E by the relation $E = \text{Im}(\lambda)$. The Neron-Severi group NS(X) can be described in yet another way as the group of the Hermitian forms λ on the \mathbb{C} -vector space V having an imaginary part which takes integral values on U.

Theorem 1.1.3 (Appell-Humbert). – Isomorphy classes of holomorphic line bundles on X = V/U correspond bijectively to pairs (λ, α) , where

- $-\lambda \in NS(X)$ is an Hermitian form on V such that its imaginary part takes integral values on U
- $-\alpha: U \rightarrow S_1$ is a map from U to the unit circle S_1 satisfying the equation

$$\alpha(u_1 + u_2) = e^{i\pi \operatorname{Im}(\lambda)(u_1, u_2)} \alpha(u_1) \alpha(u_2).$$

For every (λ, α) as above, the line bundle $L(\lambda, \alpha)$ is given by the Appell-Humbert cocycle

$$e_u(z) = \alpha(u)e^{\pi\lambda(z,u) + \frac{1}{2}\pi\lambda(u,u)}.$$

Let $\operatorname{Pic}(X)$ be the abelian group consisting of the isomorphy classes of line bundles on X and $\operatorname{Pic}^{0}(X) \subset \operatorname{Pic}(X)$ be the kernel of the Chern class. We have an exact sequence :

 $0 \to \operatorname{Pic}^0(X) \to \operatorname{Pic}(X) \to \operatorname{NS}(X) \to 0.$

Let us also write: $\hat{X} = \operatorname{Pic}^{0}(X)$; it is the group consisting of characters $\alpha : U \to S_{1}$ from U to the unit circle S_{1} . Let $V_{\mathbb{R}}^{*} = \operatorname{Hom}_{\mathbb{R}}(V,\mathbb{R})$. There is a homomorphism $V_{\mathbb{R}}^{*} \to \hat{X}$ sending $v^{*} \in V_{\mathbb{R}}^{*}$ to the line bundle $L(0, \alpha)$, where $\alpha : U \to S_{1}$ is the character

$$\alpha(u) = \exp(2i\pi \langle u, v^* \rangle).$$

This induces an isomorphism $V^*_{\mathbb{R}}/U^* \to \hat{X}$, where

 $U^* = \{ u^* \in V_{\mathbb{R}}^* \text{ such that } \forall u \in U, \ \langle u, u^* \rangle \in \mathbb{Z} \}.$

Let us denote by the semi-linear dual, consisting of \mathbb{C} -semi-linear maps $V \to \mathbb{C}$. We can identify $\overline{V}^*_{\mathbb{C}}$ with the \mathbb{R} -dual $V^*_{\mathbb{R}}$ by the \mathbb{R} -linear bijection sending a semilinear f to its imaginary part g (f can be recovered from g: use the formula f(v) = -g(iv) + ig(v)). This gives $\hat{X} = \overline{V}^*_{\mathbb{C}}/U^*$ a structure of complex torus; it is called *the dual complex torus of* X. With respect to this complex structure, the universal line bundle over $X \times \hat{X}$ given by Appell-Humbert formula is a holomorphic line bundle.

A Hermitian form on V induces a \mathbb{C} -linear map $V \to \overline{V}_{\mathbb{C}}^*$. If moreover its imaginary part takes integral values in U, the linear map $V \to \overline{V}_{\mathbb{C}}^*$ takes U into U^* and therefore induces a homomorphism $\lambda : X \to \hat{X}$ which is symmetric (i.e. such that $\hat{\lambda} = \lambda$ with respect to the obvious identification $X \simeq \hat{X}$). In this way, we identify the Neron-Severi group NS(X) with the group of symmetric homomorphisms from X to \hat{X} .

Let (λ, α) be as in the theorem and let $\theta \in H^0(X, L(\lambda, \alpha))$ be a global section of $L(\lambda, \alpha)$. Pulled back to V, θ becomes a holomorphic function on V which satisfies the equation

$$\theta(z+u) = e_u(z)\theta(z) = \alpha(u)e^{\pi\lambda(z,u) + \frac{1}{2}\pi\lambda(u,u)}\theta(z).$$

Such a function is called a theta-function with respect to the hermitian form λ and the multiplier α . The Hermitian form λ needs to be positive definite for $L(\lambda, \alpha)$ to have a lot of sections, see [15, §3].

Theorem 1.1.4. – The line bundle $L(\lambda, \alpha)$ is ample if and only if the Hermitian form H is positive definite. In that case,

$$\dim \mathrm{H}^{0}(X, L(\lambda, \alpha)) = \sqrt{\det(E)}.$$

Consider the case where H is degenerate. Let W be the kernel of H or of E, i.e.

$$W = \{ x \in V | E(x, y) = 0, \forall y \in V \}.$$

Since E is integral on $U \times U$, $W \cap U$ is a lattice of W. In particular, $W/W \cap U$ is compact. For any $x \in X$, $u \in W \cap U$, we have

$$|\theta(x+u)| = |\theta(x)|$$

for all $d \in \mathbb{N}$, $\theta \in \mathrm{H}^0(X, L(\lambda, \alpha)^{\otimes d})$. By the maximum principle, it follows that θ is constant on the cosets of X modulo W and therefore $L(\lambda, \alpha)$ is not ample. Similar argument shows that if H is not positive definite, $L(H, \alpha)$ can not be ample, see [15, p.26].

If the Hermitian form H is positive definite, then the equality

$$\dim \mathrm{H}^{0}(X, L(\lambda, \alpha)) = \sqrt{\det(E)}$$

holds. In [15, p.27], Mumford shows how to construct a basis, well-defined up to a scalar, of the vector space $\mathrm{H}^0(X, L(\lambda, \alpha))$ after choosing a sublattice $U' \subset U$ of rank *n* which is Lagrangian with respect to the symplectic form *E* and such that $U' = U \cap \mathbb{R}U'$. Based on the equality dim $\mathrm{H}^0(X, L(\lambda, \alpha)^{\otimes d}) = d^n \sqrt{\det(E)}$, one can prove $L(\lambda, \alpha)^{\otimes 3}$ gives rise to a projective embedding of *X* for any positive definite Hermitian form λ . See Theorem 2.2.3 for a more complete statement.

Definition 1.1.5. – 1. An abelian variety is a complex torus that can be embedded into a projective space.

2. A polarization of an abelian variety X = V/U is an alternating form $\lambda : \bigwedge^2 U \to \mathbb{Z}$ which is the Chern class of an ample line bundle.

With a suitable choice of a basis of U, λ can be represented by a matrix

$$E = \left(\begin{array}{cc} 0 & D\\ -D & 0 \end{array}\right) \,,$$

where D is a diagonal matrix $D = (d_1, \ldots, d_n)$ for some non-negative integers d_1, \ldots, d_n such that $d_1|d_2|\ldots|d_n$. The form E is non-degenerate if these integers are nonzero. We call $D = (d_1, \ldots, d_n)$ the type of the polarization λ . A polarization is called *principal* if its type is $(1, \ldots, 1)$.

Corollary 1.1.6 (Riemann). – A complex torus X = V/U can be embedded as a closed complex submanifold into a projective space if and only if there exists a positive definite hermitian form λ on V such that the restriction of its imaginary part to U is a (symplectic) 2-form with integral values.

Let us rewrite Riemann's theorem in term of matrices. We choose a \mathbb{C} -basis e_1, \ldots, e_n for V and a \mathbb{Z} -basis u_1, \ldots, u_{2n} of U. Let Π be the $n \times 2n$ -matrix $\Pi = (\lambda_{ji})$ with $u_i = \sum_{j=1}^n \lambda_{ji} e_j$ for all $i = 1, \ldots, 2n$. Π is called the period matrix. Since $\lambda_1, \ldots, \lambda_{2n}$ form an \mathbb{R} -basis of V, the $2n \times 2n$ -matrix $\begin{pmatrix} \Pi \\ \overline{\Pi} \end{pmatrix}$ is invertible. The alternating form $E : \bigwedge^2 U \to \mathbb{Z}$ is represented by an alternating matrix, also denoted by E, with respect to the \mathbb{Z} -basis u_1, \ldots, u_{2n} . The form $\lambda : V \times V \to \mathbb{C}$ given by $\lambda(x, y) = E(ix, y) + iE(x, y)$ is hermitian if and only if $\Pi E^{-1} {}^t \Pi = 0$. When this condition is satisfied, the Hermitian form λ is positive definite if and only if the symmetric matrix $i \Pi E^{-1} {}^t \overline{\Pi}$ is positive definite.