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INVERSE MEAN CURVATURE FLOW
IN COMPLEX HYPERBOLIC SPACE

 G PIPOLI

A. – We consider the evolution by inverse mean curvature flow of a closed, mean convex
and star-shaped hypersurface in the complex hyperbolic space. We prove that the flow is defined for
any positive time, the evolving hypersurface stays star-shaped and mean convex. Moreover the induced
metric converges, after rescaling, to a conformal multiple of the standard sub-Riemannian metric on
the sphere. Finally we show that there exists a family of examples such that the Webster curvature of
this sub-Riemannian limit is not constant.

R. – Nous considérons l’évolution par l’inverse de la courbure moyenne d’une surface
étoilée, fermée et à courbure moyenne positive dans l’espace hyperbolique complexe. Nous montrons
que le flot est défini pour tout temps positif et que la surface reste étoilée et à courbure moyenne positive.
De plus, la métrique induite, après un changement d’échelle, converge vers un multiple conforme de
la métrique sous-riemannienne standard sur la sphère de dimension impaire. Nous allons montrer
l’existence d’exemples de données initiales telles que cette limite sous-riemannienne n’a pas courbure
de Webster constante.

1. Introduction

During last years geometric flows of submanifolds of Riemannian manifolds have been
studied intensively. In the class of expanding flows, the leading example is the inverse mean
curvature flow. In this paper we consider the evolution by inverse mean curvature flow of
real hypersurfaces of the complex hyperbolic space CHn, with n � 2. For any given smooth
hypersurface F0 W M ! CHn , the solution of the inverse mean curvature flow with initial
datum F0 is a one-parameter family of smooth immersion F W M � Œ0; T /! CHn such that

(1.1)

8<:
@F

@t
D

1

H
�;

F.�; 0/ D F0;

This research is supported by the ERC Avanced Grant 320939, Geometry and Topology of Open Manifolds
(GETOM).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/05/© 2019 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2404



1108 G. PIPOLI

where H is the mean curvature of Ft D F.�; t / and � is the outward unit normal vector
of M t D Ft .M /. It is the main tool used in the celebrated paper of Huisken and Ilmanen
in [8] for proving the Penrose inequality.

In this paper we restrict to the class of star-shaped hypersurface in CHn. The inverse mean
curvature flow of star-shaped hypersurfaces has been already studied in different ambient
manifolds: for example the Euclidean space [4, 18], the hyperbolic space [6, 9], asymptotic
hyperbolic spaces [13], rotationally symmetric spaces [2] and warped products [17, 19]. In any
case it was proved that the flow is defined for any positive time and the evolving hypersurface
stays star-shaped for all the life of the flow. Inverse mean curvature flow of star-shaped
hypersurfaces in rank one symmetric spaces have been considered for different purposes in
[11] too.

The geometry of the ambient manifold influences the nature of the limit of the induced
metric. In fact Gerhardt [4] and Urbas [18] proved independently that, for any star-shaped
hypersurface of the Euclidean space, the limit metric is, up to rescaling, always the standard
round metric on the sphere. In [9] P.K. Hung and M.T. Wang showed that, when the ambient
manifold is the hyperbolic space, the limit metric is not always round. More precisely it
is a conformal multiple of the standard round metric on the sphere and so it is round
only in special cases. The case studied in the present paper has some similarities with the
previous results, but a new phenomenon appears: even after rescaling, the evolving metric
blows up along a direction. Hence the limit metric is no more Riemannian, but only sub-
Riemannian: it is defined only on a codimension-one distribution. The main theorem proved
is the following.

T 1.1. – For any M 0 closed, mean convex and S1-invariant star-shaped hypersur-
face in CHn let M t be its evolution by inverse mean curvature flow, let gt be the induced metric
on M t and �t the induced contact form. Then:

(1) M t is S1-invariant, star-shaped and mean convex for any time t ;

(2) the flow is defined for any positive time;

(3) there is a smooth S1-invariant function f such that the rescaled induced metric
Qgt D jM t j

� 1n gt converges to a sub-Riemannian metric Qg1 D e2f �sR (i.e., a conformal
multiple of the standard sub-Riemannian metric on the sphere S2n�1) and the rescaled
contact form Q� D jM t j

� 1n �t converges to Q�1 D e2f O� , where O� is the standard contact
form on the odd dimensional sphere;

(4) moreover there are examples of M 0 such that the limit does not have constant Webster
scalar curvature.

After proving that the flow can be extended for any positive time, we have that the volume
of M t becomes arbitrary large and then M t “explores” the structure at infinity of the
ambient manifold as t tends to infinity. Hence the convergence to a sub-Riemannian metric
is not surprising because the boundary at infinity of CHn is .S2n�1; �sR/, the one point
compactification of the Heisenberg group of dimension 2n � 1 endowed with its standard
sub-Riemannian metric. Different initial data explore this structure at infinity in different
ways, but our result shows that we remain in the conformal class of �sR.
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Obviously for any finite time t , Qgt is a Riemannian metric, but there is a direction in which
the metric is blowing up. This special direction is J�, where J is the complex structure ofCHn

and � is the outward unit normal vector field of M t . Note that, since we are considering only
submanifolds of codimension one, J� is for sure tangent to M t . One of the main difficulties
in generalizing the previous results is to describe the contribution of this special direction.
Its presence gives also a new phenomenon not present in the previous literature. The second
fundamental form converges to that of an horosphere with an exponential speed but, unlike
for example [4, 17, 19], we have that the speed is not the same for any initial datum: very
symmetric hypersurfaces converge twice as fast as the generic S1-invariant hypersurface (see
Remark 6.6 below for more details).

If we try to study the limit of the sectional curvature of this family of metric Qgt , it always
diverges: this is a general behavior when we try to approximate a sub-Riemannian metric with
a family of Riemannian metrics. For that reason another notion of curvature is required. We
will use in particular the Webster curvature.

It is very easy to find hypersurfaces of CHn such that Qg1 has constant Webster curvature.
It is the case of the geodesic spheres: as we will see in detail in Section 4, the evolution of a
geodesic sphere is a family of geodesic spheres and the function f is constant. On the other
hand, the search for an example with a non-trivial limit is much more challenging. The main
tool for studying the roundness of the limit is the following Brown-York like quantity: for
any star-shaped hypersurface M

Q.M / D jM j�1C
1
n

Z
M

�
H � OH

�
d�;

where jM j is the volume of M and, if � is the radial function defining M , OH is the value
of the mean curvature of a geodesic sphere of radius � (see (3.8) for the explicit definition).
Q gives a measure of how M is far to being a geodesic sphere. It is not a measure in the
strict sense because Q has not a sign and, even if it is zero for geodesic spheres, it is not in
general truly the opposite. In the final section of this paper we found the desired non-trivial
examples estimating the behavior of Q along the inverse mean curvature flow.

This paper is organized as follows. In Section 2 we collect some preliminaries and we fix
some notations. In Section 3 we compute the main geometric quantities for a star-shaped
hypersurface in CHn, like the induced metric, the second fundamental form and the mean
curvature. In Section 4 we have a simple but meaningful example, i.e., the evolution of the
geodesic spheres. In Section 5 we estimate the norm of the gradient of the radial function.
As consequence we have that the property of being star-shaped and the mean convexity
are preserved by the flow. The study of the derivatives of the radial function continues in
Sections 6 and 7. In particular we prove that the solution of the flow is defined for any positive
time. Section 8 is devoted to the proof of the convergence of the rescaled induced metric to a
sub-Riemannian limit. In the last section we conclude the proof of Theorem 1.1 by studying
the Webster curvature of the limit metric and giving a family of non-trivial examples.

Finally we would like to announce that the ideas developed in the present paper have been
extended in [16] in the case of the next rank one symmetric space, that is the quaternionic
hyperbolic space. An analogous of Theorem 1.1 holds in this other setting too.
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