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PERTURBATION OF C1-DIFFEOMORPHISMS AND

GENERIC CONSERVATIVE DYNAMICS ON SURFACES

by

Sylvain Crovisier

Abstract. — We give a survey on the main dynamical properties satisfied by C1-
generic surface diffeomorphisms. We state a connecting lemma for pseudo-orbits
obtained in collaboration with M.-C. Arnaud and C. Bonatti. We then explain the
perturbation techniques in C1 topology.

Résumé(Perturbations des difféomorphismesC1 et dynamique générique conservative sur
les surfaces)

Nous donnons un panorama des principales propriétés dynamiques satisfaites par
les difféomorphismes C1-génériques sur les surfaces. Nous énonçons un lemme de
connexion pour les pseudo-orbites. Puis, nous expliquons les techniques de perturba-

tions pour la topologie C1.

0. Introduction

When one studies a mechanical system with no dissipation, the motion is governed
by some ordinary differential equations which preserve a volume form. As an example,
the forced damped pendulum with no friction gives rise to a conservative dynamics
on the open annulus (see [Hub99]): let θ be the angle between the axis of a rigid

pendulum with the vertical and θ̇ be the angle velocity. The configurations (θ, θ̇) live
on the infinite annulus A = R/Z × R and the motion is governed by the equation

d2

dt2
θ = − sin(2πθ) + h(t),

where h is the forcing. The volume form dθ ∧ dθ̇ is preserved. By integrating the
system, one obtains a global flow (φt)t∈R, that is a family of diffeomorphisms of A

which associates to any initial configuration (θ, θ̇) at time 0 the configuration φt(θ, θ̇)
at time t. If the forcing h is T -periodic, the flow satisfies the additional relation
φt+T = φt ◦φT and the dynamics of the pendulum can be studied through the iterates
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2 S. CROVISIER

of the conservative annulus diffeomorphism f = φT . Several simple questions may be
asked about this dynamics:

– What are the regions U ⊂ A that are invariant by f? Invariant means that
f(U) = U .

– Does there exist a dense set of initial data (θ, θ̇) which are periodic? Periodic

means that f τ (θ, θ̇) = (θ, θ̇) for some integer τ ≥ 1.

– How do the orbit separate? More precizely, let us consider two initial data (θ, θ̇)

and (θ′, θ̇′) that are close. How does the distance d(fn(θ, θ̇), fn(θ, θ̇)) behaves
when n increases?

Another example of conservative diffeomorphism is the standard map on the two-
torus:

(x, y) 7→
(
x+ y, y + a sin(2π(x+ y))

)
mod Z

2.

It is sometimes considered by physicists as a model for chaotic dynamics: the equations
defining such a diffeomorphism are simple but we are far from being able to give a
complete description of its dynamics. However one can hope that some other systems,
arbitrarily close to the original one, could be much easier to be described. To reach this
goal, one has to precise what “arbitrarily close” and “be described” mean: the answer
to our problem will depend a lot on these two definitions. The viewpoint we adopt
in this text allows us to give a rather deep description of the dynamics. However one
should not forget that one can choose other definitions which could seem also (more?)
relevant and that very few results were obtained in this case.

The setting, Baire genericity.— In the following we consider a compact and bound-
aryless smooth connected surface M endowed with a smooth volume v (which is, after
normalization, a probability measure) and we fix a diffeomorphism f on M which pre-
serves v. We are aimed to describe the space of orbits of f and in particular the space
of periodic orbits.

Lots of difficulties appear if one chooses an arbitrary diffeomorphism. Our philos-
ophy here will be to forget the dynamics which seem too pathological hoping that
the set of diffeomorphisms that we describe is large (at least dense in the space of
dynamical systems we are working with). For us, such a set will be large if it is generic
in the sense of Baire category.

This notion requires to choose carefully the space of diffeomorphisms, that should
be a Baire space: for example for any k ∈ N, the space Diffk

v of Ck-diffeomorphisms of
M which preserve v. A set of diffeomorphisms is generic (or residual) if it contains a

dense Gδ subset of Diffk
v , i.e. by Baire theorem if it contains a countable intersection of

dense open sets of Diffk
v (so that the intersection of two generic sets remains generic).

In the sequel, we are interested in exhibiting generic properties of diffeomorphisms:
these are properties that are satisfied on a generic set of diffeomorphisms.

An example: generic behavior of periodic orbits.— Robinson has proven in [Rob70,
Rob73] the following generic property which extends a previous result of Kupka and
Smale to the conservative diffeomorphisms. It is a consequence of Thom’s transver-
sality theorem.

PANORAMAS & SYNTHÈSES 21
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Theorem 0.1(Robinson). — When k ≥ 1, for any generic diffeomorphism f ∈ Diffk
v ,

and any periodic orbit p, f(p), . . . , f τ (p) = p, one of the two following cases occurs
(figure 1):

– either the orbit of p is elliptic: the eigenvalues of Dp f
τ are non-real (in partic-

ular, this tangent map is conjugate to a rotation);
– or p is a hyperbolic saddle: the eigenvalues are real and have modulus different

from 1. In this case, there are some one-dimensional invariant manifolds (one
stable W s(p) and one unstable Wu(p)) through p. Points on the stable manifold
converge towards the orbit of p in the future, and the same for points on the
unstable manifold in the past.

p

f τ

Wu

W s
f τ

q

Figure 1. Dynamics near an elliptic point, p, and a saddle point, q.

One wants to say that the dynamics of the return map f τ near a τ -periodic p“looks
like” the dynamics of the tangent map Dp f

τ . This is the case if p is hyperbolic:
D. Grobman and P. Hartman have shown that if p is hyperbolic, the map f τ is
topological conjugate to D f τ near p; more precizely, there exist a neighborhood U of
p and V of 0 in the tangent space TpM and a homeomorphism h : U → V such that
h ◦ f τ = Dp f

τ ◦ h.
Theorem 0.1 implies in particular:

Corollary 0.2. — When k ≥ 1, for any generic diffeomorphism f ∈ Diffk
v , and any

τ ∈ N \ {0}, the set of periodic points of period τ is finite.

In the next part we will give other examples of generic properties. They are often
obtained in the same way:

– One first proves a perturbation result, which is in general the difficult part.
In the previous example, one shows that for every integers τ, k ≥ 1, any Ck-
diffeomorphism f can be perturbed in the space Diffk

v as a diffeomorphism g
whose periodic orbits of period τ are elliptic or hyperbolic.
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– One then uses Baire theorem for getting the genericity. An example of this
standard argument is given at section I.3.1.

The last two parts are devoted to some important perturbation results. In part II,
we discuss Pugh’s closing lemma that allows to create periodic orbits and Hayashi’s
closing lemma that allows to glue two half orbits together; the perturbations in these
two cases are local. In part III, we state a connecting lemma for pseudo-orbits obtained
with M.-C. Arnaud and C. Bonatti through global perturbations and explain the main
ideas of its proof.

I. Overview of genericity results on the dynamics of C1 conservative
surface diffeomorphisms

This part is a survey of the properties satisfied by the C1-generic conservative
diffeomorphisms of compact surfaces

I.1. Discussions on the space Diffk
v. — In general, the generic properties depend

strongly on the choice of the space Diffk
v . We will here illustrate this on an example

and explain why we will focus on the C1-topology.

I.1.1. Some generic properties in different spaces. — One of the first result was given
by Oxtoby and Ulam [OU41], in the C0-topology.

Theorem I.1(Oxtoby-Ulam). — For any generic homeomorphism f ∈ Diff0
v, the in-

variant measure v is ergodic.

Ergodicity means that for the measure v, the system cannot be decomposed: any
invariant Borel set A has either measure 0 or 1. By Birkhoff’s ergodic theorem, the
orbit of v-almost every point is equidistributed in M .
The C0 topology also seems very weak: one can show that since for any generic
diffeomorphism, once there exists a periodic point of some period p, then the set of
p-periodic points is uncountable. (In particular corollary 0.2 does not hold for Diff0

v.)
In high topologies, one gets Kolmogorov-Arnold-Moser theory. One of the finest

forms is given by Herman (see [Mos73, section II.4.c], [Her83, chapitre IV] or
[Yoc92]).

Theorem I.2(Herman). — There exists a non-empty open subset U of Diffk
v , with k ≥

4 and for any diffeomorphism f ∈ U , there exists a smooth closed disk D ⊂M which
is periodic by f : the disks D, f(D),. . . , f τ−1(D) are disjoint and f τ (D) = D.

Theses disks are obtained as neighborhoods of the elliptic periodic orbits. The
dynamics in this case is very different from the generic dynamics in Diff0

v since the
existence of invariant domains breaks down the ergodicity of v: the orbit of any point
of D cannot leave the set D ∪ f(D) ∪ · · · ∪ f τ−1(D).

Remark I.3. — We should notice that by a result of Zehnder [Zeh76] for each k ≥ 1,

the C∞-diffeomorphisms are dense in Diffk
v . Therefore, for any 1 ≤ k < `, any
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property that is generic in Diff`
v will be dense in Diffk

v. This result is not known is
this generality in higher dimensions for conservative diffeomorphisms.

I.1.2. An elementary perturbation lemma. — The reason why theorem I.1 is true
is that perturbations in Diff0

v are very flexible: for any homeomorphism f ∈ Diff0
v

and any point x ∈ M , one can perturb f in order to modify the image of f(x).
More precisely, if y is close to f(x), one chooses a small path γ that joints f(x) to
y. Pushing along γ, one can modify f as homeomorphism g so that g(x) = y. The
homeomorphisms f and g will coincide outside a small neighborhood of γ. Hence, the
C0-norm of the perturbation is about equal to the distance between x and y.

In the space Diff1
v, the C1-norm of the perturbation also should be small (for

example smaller than ε > 0) and one has to perturb f on a larger domain (in a ball
of radius about ε−1 d(x, y)). This can been seen easily from the mean value theorem:
let x, y be two points and ϕ be a perturbation of the identity which satisfies ϕ(x) = y
and such that ‖Dϕ− Id ‖ ≤ ε; then, if a point z is not perturbed by ϕ (i.e. ϕ(z) = z),
we get

‖y − x‖ = ‖(ϕ(x) − x) − (ϕ(z) − z)‖ ≤ ε.‖z − x‖.

As a consequence, when ε is small, the perturbation domain has a large radius and
lot of the orbits of f will be modified.

This remark will be at the root of all the genericity results that will be presented
below (a more precise statement will be given at section I.1.2). It explains the difficulty

of the perturbations in Diff1
v. In higher topologies, the situation becomes much more

complicated since in Diffk
v , the radius of the perturbation domain should be at least

(ε−1 d(x, y))
1
k .

This justifies why we will now work in Diff1
v: we need a space of diffeomorphisms

where the elementary perturbations don’t have a too large support.

I.2. The closing and connecting lemmas. — From the elementary perturbation
lemma, one derivates more sophisticated perturbation lemmas.

I.2.1. Pugh’s closing lemma. — The first result was shown by Pugh [Pug67b,
Pug67a, PR83, Arn98]. It allows one to create by perturbation some periodic
orbit once the dynamics is recurrent. More precisely, one considers the points z
whose orbit is non-wandering: for any neighborhood U of z, there is a forward iterate
fn(U) of U (with n ≥ 1) which intersects U .

The local perturbation result is the following (see also figure 2):

Theorem I.4(Closing lemma, Pugh). — Let f be a C1-diffeomorphism in Diff1
v and

z ∈ M a non-wandering point. Then, there exists a C1-small perturbation g ∈ Diff1
v

of f such that z is a periodic orbit of f .

I.2.2. Hayashi’s connecting lemma. — We have seen that the closing lemma allows us
to connect an orbit to itself. About 30 years later, Hayashi [Hay99, WX00, Arn01]
proved a second local perturbation lemma and showed how to connect an orbit to
another one (see figure 3).
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