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IDENTITY ISOTOPIES ON SURFACES

by

Patrice Le Calvez

Abstract. — We will state an equivariant foliated version of the classical Brouwer

Plane Translation Theorem and will explain how to apply this result to the study of

homeomorphisms of surfaces. In particular we will explain why a diffeomorphism of

a closed oriented surface of genus ≥ 1 that is the time-one map of a time dependent

Hamiltonian vector field has infinitely many contractible periodic orbits. This gives a

positive answer in the case of surfaces to a more general question stated by C. Conley.

We will state other results about linking numbers of fixed points or periodic orbits

of homeomorphisms of surfaces. We will conclude this article by introducing the

free brick decompositions and explaining how to use these decompositions to get the

equivariant foliated version of the Brouwer Plane Translation Theorem.

Résumé(Étude dynamique des homéomorphismes de surface isotopes àl’identité)
Nous allons établir une version feuilletée équivariante du théorème classique de

translation plane de Brouwer. Nous expliquerons ensuite comment utiliser ce résul-

tat pour étudier les homéomorphismes de surfaces. En particulier, nous montrerons

qu’un difféomorphisme d’une surface compacte qui est le temps 1 d’une isotopie ha-

miltonienne admet une infinité d’orbites périodiques contractiles, obtenant ainsi une

réponse positive, dans le cas des surfaces, à une conjecture plus générale de C. Conley.

Nous établirons d’autres résultats sur le nombre d’enlacement des points fixes et des

points périodiques d’un homéomorphisme de surface. Nous conclurons cet article en

introduisant les décompositions en briques libres et expliquerons comment se prouve

le théorème de Brouwer feuilleté équivariant à partir de ces décompositions.

0. Introduction

By Cauchy-Lipschitz’s theorem, one knows that if X is a smooth vector field on a
manifold M and z a point of M , there exists a unique smooth map t 7→ Ft(z) which
is defined on an open interval containing 0, which satisfies F0(z) = z, d

dtFt(z) =
X(Ft(z)) and which cannot be extended continuously on a larger interval. In the
case where each map t 7→ Ft(z) is defined on the whole real line, the vector field
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is complete; it is the case for example if M is compact or if M is endowed with a
complete Riemmanian metric and X is bounded. If X is a smooth complete vector
field, the map (t, z) 7→ Ft(z) is smooth on R ×M and the family (Ft)t∈R is a flow
or a one parameter group: the map t 7→ Ft is a morphism from the additive group R
into the group of smooth diffeomorphisms of M . One obtains a continuous dynamical
system. Such a system may be reduced, sometimes, to a discrete dynamical system
(i.e. the study of the iterates of a diffeomorphism of a manifold) if there exists a global
Poincaré section.

One can define similarly a complete time dependant smooth vector field X on a
manifold M : there exists a (unique) smooth map (t, z) 7→ Ft(z) on R × M such
that F0(z) = z, ∂

∂tFt(z) = X(t, Ft(z)). Such systems appear naturally when an
autonomous sytem is perturbed with an exterior forcing term. Each Ft is a diffeo-
morphism but the family (Ft)t∈R is no more a flow. However, if X is periodic in time,
of period T , one can prove that Ft+T = Ft ◦ FT for every t ∈ R: the study of our
system may be reduced to the discrete dynamical system defined by FT . In fact one
obtains an autonomous vector field Y on R/TZ×M by writing Y (t, z) = ( ∂

∂t , X(t, z)).
The induced flow admits a global Poincaré section {0}×M and the first return map
may be written (0, z) 7→ (0, FT (z)). Note that FT is a diffeomorphism isotopic to the
identity. We will be interested here in the study of such objects. As our methods will
be topological we will be interested more generally in the study of homeomorphisms
of M which are isotopic to the identity, the simplest case being when the homeomor-
phism is the time-one map of a flow. The general problem we are interested in is the
following: find results about time-one map of flows which may be extended to time-one
map of isotopies.

As explained in the introduction of this volume, periodic orbits are highly important
in the study of dynamical sytems. We will mainly be interested on results about fixed
and periodic points. We will see that much can be said when dimM = 2, that means
when M is a surface, and that such extensions are usually easy to get when the map
is a diffeomorphism which is “close” to the identity.

We introduce now some definitions that we will use in this text, then we give some
examples to illustrate what kind of problems we are interesting in.

By an identity isotopy on a manifold M we mean a continuous arc

[0, 1] −→ Homeo(M)

t 7−→ Ft

such that F0 = IdM , the last set being endowed with the compact-open topology. We
naturally extend this map on R by writing Ft+1 = Ft ◦ F1.

The trajectory of a point z is the arc γz : t 7→ Ft(z) defined on [0, 1].
A fixed point z of F = F1 is contractible if γz (which is a loop) is homotopic to

zero. More generally a periodic point (of period q) is contractible if the loop γq
z =∏

0≤i<q γF i(z) obtained by concatenating trajectories is homotopic to zero. Of course

the set Fixcont(F ) ⊂ Fix(F ) of contractible fixed points and the set Percont(F ) ⊂
Per(F ) of contractible periodic points depend on the chosen isotopy.
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The Poincaré-Hopf’s formula
∑

ξ(z)=0

i(ξ, z) = χ(M)

asserts that for any continuous vector field on a compact manifold with a finite number
of singularities, the sum of the Poincaré indices at each singularity is equal to the Euler
characteristic χ(M) of M . The natural extension to the discrete case is the Lefschetz’s
formula. In the particular case of a homeomorphism F which is isotopic to the identity
and has a finite number of fixed points, it may be written

∑

F (z)=z

i(F, z) = χ(M),

where i(F, z) is the Lefschetz index at z. An improved version (the Lefschetz-Nielsen’s
formula) gives us the same equality by keeping only the contractible fixed points.
Endowing M with a Riemannian metric and using the exponential map, one may
observe that the last formula is a consequence of the first one if F is sufficiently
close to the identity for the uniform topology. Indeed there exists a uniquely defined
continuous vector field X such that expz(X(z)) = F (z), for every z ∈ M , and the
Poincaré index i(X, z) is equal to the Lefschetz index i(F, z).

A much more difficult example is Arnold’s conjecture for Hamiltonian diffeomor-
phisms. Let (M,ω) be a symplectic compact manifold. If H is a smooth function on
M , one can define the induced Hamiltonian vector field XH , which is the symplectic
gradient ofH (i.e. ωz(XH(z), Y ) = TzH(Y )) for every Y ∈ TzM). Every critical point
of H is a singularity of XH . So one may minimize the number of singularities of XH

by an integer nM , equal to the minimum number of critical points that any smooth
function defined on M must have. One knows, for example, that nM is not smaller
that the number of charts necessary to cover M . One can define similarly an integer
n′M ≥ nM if we restrict ourselves to the Morse functions, that means functions with
only nondegenerate critical points (i.e. the bilinear form T 2

zH is non degenerate if z
is a critical point). Here again, n′M is at least equal to the sum of the Betti numbers.
For example:





nM = n′M = 2 if M = Sn is a sphere,

nM = 3, n′M = 2 + 2g if M is a compact oriented surface of genus g ≥ 1,

nM = n+ 1, n′M = 2n if M = Tn = Rn/Zn is a torus.

Consider now a smooth function H : R ×M → R periodic in time, of period 1.
Define the time dependent vector field XH , where XH(t, .) is the symplectic gradient
of H(t, .), and the time-one map F = F1 of the identity isotopy (Ft)t∈R naturally
defined by XH . Let us state the

Arnold’s conjecture([Ar1]). — Is the number of contractible fixed points minimized by
nM? Is it minimized by n′M if every fixed point of F is nondegenerate?

In the case where F is close to the identity in the C1-topology, one can construct a
generating function whose critical points correspond to the contractible fixed points
and the conjecture is true. The first proven case of the conjecture is due to C. Conley
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and E. Zehnder [CoZ] for T2n, the case of the surfaces was done a little bit later
(A. Floer [Flo1], J.-C. Sikorav [Si]). For the second question, a breakthrough is due
to Floer [Flo2] who minimized the number of contractible fixed points by the sum of
the Betti numbers under a special “monotone” condition on the symplectic manifold.
Floer’s result was generalized by H. Hofer and D. Salamon [HofSal] and by K. Ono
[O] to the “weakly monotone” case. Now this minoration is known to be true for any
symplectic manifold (G. Liu, G. Tian [LiTi], K. Fukaya, Ono [FuO]).

Conley conjectured that the number of contractible periodic points was infinite
in the case of a torus T2n or in the case of a surface of genus ≥ 1. It was proved
in the case where every contractible fixed point is non degenerate (see D. Salamon
and Zehnder [SalZ]). Let us explain the conjecture by looking at the simple case
of the time-one map F of the flow of a Hamiltonian vector field XH associated to
a function H : M → R on a compact oriented surface of genus ≥ 1 (the previous
conjecture is clearly false for the sphere, think of a rigid rotation by an irrational
angle mod. π). If H is constant, the map F is the identity and every point is a
contractible fixed point. Otherwise fix a regular value c in the range of H and a
connected component Γ0 of H−1({c}). One knows that H is invariant by the flow
of XH , which implies that Γ0 is a closed orbit of this flow. This orbit is embedded
in a maximal open annulus A ⊂ M foliated by other closed orbits Γ. Moreover the
limit set of each end of A contains a critical point. Note that the limit set of at least
one of these ends is not reduced to a point because M is not a sphere. The time-
one map F is conjugate to a rotation RνΓ+Z on each circle Γ, where νΓ ∈ (0,+∞)
is well defined and depends continuously on Γ. Moreover νΓ tends to zero when Γ
tends to each end whose limit set is not reduced to a point. One concludes that there
exist periodic points of arbitrarily large period. In the particular case where H has
a finite number of critical points, choose one point where H reaches its maximum.
One of the previous annulus is such that the limit set of one of its ends is reduced
to that point. Observe that the periodic points of F which are in this annulus are
necessarily contractible. The existence of contractible periodic points of arbitrarily
large period may be proven in the same way if Crit(H) is “topologically trivial”, that
means contained in a disk.

The usual way to compute nM and n′M is to equipM with a Riemannian metric and
to study the dynamics of the gradient vector field associated to H (Morse’s theory).
This vector field Y is not uniquely defined (it depends on the Riemannian metric) and
the induced flow is transverse to the Hamiltonian flow outside Crit(H), if dimM = 2.
Every leaf of the foliation F by orbits of Y is pushed on its left by the isotopy (Ft)t∈R

associated to XH . More precisely, every orbit of XH is positively transverse to F ,
it intersects transversally every leaf, crossing it from the right to the left. We will
see that dynamically transverse foliations can be constructed for the time-one map
of a Hamiltonian identity isotopy and more generally for the time-one map F of any
identity isotopy (Ft)t∈[0,1] in the following sense. One can find

– a (non necessarily unique) closed subset Z ⊂ Fixcont(F );
– an identity isotopy (F ′t )t∈[0,1] homotopic (relative to the ends) to (Ft)t∈[0,1], such

that F ′t (z) = z, for every z ∈ Z and every t ∈ [0, 1];
– a non singular oriented topological foliation F on M \ Z;
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such that every leaf of F is pushed on its left by the isotopy (F ′t )t∈[0,1]: every trajectory
z 7→ F ′t (z) is homotopic (relative to the ends) to an arc that is positively transverse
to F .

We will obtain in that way an interesting tool to study homeomorphisms of surfaces.
It will permit us to give in section 5 a proof of Conley’s conjecture in the case of a
compact surface of genus ≥ 1.

Let us explain now the structure of this article.
We will recall in the next section Brouwer’s theory of orientation preserving home-

omorphisms of the euclidean plane and in particular Brouwer’s plane translation the-
orem. This theorem asserts that if F is a given orientation preserving and fixed point
free homeomorphism of R2, then by any point passes a Brouwer line, that means a
properly imbedded line Γ which separates its direct and inverse image by F . Brouwer’s
theory may be seen as an extension for orientation preserving homeomorphisms of R2

of some results which are obviously true in the case of time-one maps of flows on R2.
In section 2 we will state an improved version of Brouwer’s plane translation theo-

rem. If F is an orientation preserving and fixed point free homeomorphism of R2 we
will foliate the plane by Brouwer lines. Moreover if F commutes with the elements
of a discrete group of orientation preserving homeomorphisms, which acts freely and
properly on R2, the foliation may be chosen invariant by the action of the group. One
may reformulate this result. Let F be the time-one map of an identity isotopy on a
surface, if there is no contractible fixed point then one can find a foliation dynamically
transverse to the isotopy: every trajectory z 7→ Ft(z) is homotopic (relative to the
ends) to an arc that is positively transverse to F . The ideas of the proofs of these
results will be given in section 6.

In section 3 we will give the first applications of the existence of dynamically
transverse foliations. Let F be the time-one map of an identity isotopy (Ft)t∈[0,1] on

a compact surface M of genus g ≥ 1 and F̃ the time-one map of the lifted identity

isotopy (F̃t)t∈[0,1] on the universal covering space M̃ . One can define the linking

number I(z, z′) ∈ Z of two distinct fixed points of F̃ , equal to the winding number

of t 7→ F̃t(z
′)− F̃t(z) (a precise definition is given in the section). Similarly, one can

define the linking number I(z, z′) where z is a fixed point and z′ a periodic point of

F̃ . The main result of this section is the fact, which will be useful later, that for

every periodic point z′ of F̃ of period q ≥ 2, there exists a fixed point z such that
I(z, z′) 6= 0. Similar results on the sphere are proven in the same section.

In section 4 we will state a topological generalization of the classical Poincaré-
Birkhoff’s theorem about homeomorphisms of the annulus. We will give a proof by
using the existence of dynamically transverse foliations. Using the results of the
previous section, one will deduce that if F is the time-one map of an identity isotopy
(Ft)t∈[0,1] on a compact surface M of genus g ≥ 1 which preserves a probability
measure with total support, and which has a contractible periodic point of period
q ≥ 2, then F has contractible periodic points of period arbitrarily large. There is a
similar result on the sphere if one supposes moreover that F has at least three fixed
points.
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