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REAL ALGEBRAIC SETS

by

Michel Coste

Abstract. — The aim of these notes is to present the material needed for the study of
the topology of singular real algebraic sets via algebraically constructible functions.
The first chapter reviews basic results of semialgebraic geometry, notably the trian-
gulation theorem and triviality results which are crucial for the notion of link, which
plays an important role in these notes. The second chapter presents some results on
real algebraic sets, including Sullivan’s theorem stating that the Euler characteristic
of a link is even, and the existence of a fundamental class. The third chapter is de-
voted to constructible and algebraically constructible functions; the main tool which
makes these functions useful is integration against Euler characteristic. We give an
idea of how algebraically constructible functions give rise to combinatorial topological
invariants which can be used to characterize real algebraic sets in low dimensions.

Résumé(Ensembles algébriques réels). —Ces notes ont pour ambition d’expliquer les
outils nécessaires à l’étude de la topologie des ensembles algébriques réels singuliers
au moyen des fonctions algébriquement constructibles. La première section passe en
revue les faits de base de la géométrie semialgébrique, notamment le théorème de
triangulation et les résultats de trivialisation, cruciaux pour la notion d’entrelacs qui
joue un rôle important dans ces notes. La deuxième section présente quelques résul-
tats sur les ensembles algébriques réels, dont le théorème de Sullivan qui dit que la
caractéristique d’Euler de l’entrelacs est paire, et l’existence d’une classe fondamen-
tale. La troisième section est consacrée aux fonctions constructibles et algébriquement
constructibles ; l’outil principal qui rend ces fonctions utiles est l’intégration par rap-
port à la caractéristique d’Euler. On donne une idée de la façon dont les fonctions

algébriquement constructibles donnent des invariants topologiques combinatoires qui
permettent de caractériser les ensembles algébriques réels de petite dimension.

1. Semialgebraic sets

In this section we present some basic topological facts concerning semialgebraic

sets, which are subsets of R
n defined by combinations of polynomial equations and
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inequalities. One of the main properties is the fact that a compact semialgebraic set

can be triangulated. We introduce the notion of link, which is an important invariant

in the local study of singular semialgebraic sets. We also define a variant of Euler

characteristic on the category of semialgebraic sets, which satisfies nice additivity

properties (this will be useful for integration in section 3).

We do not give here the proofs of the main results. We refer the reader to [2], [3]

and [5].

Most of the results presented here hold also for definable sets in o-minimal struc-

tures (this covers, for instance, sets defined with the exponential function and with

any real analytic function defined on a compact set). We refer the reader to [6] and [4].

1.1. Semialgebraic sets, Tarski-Seidenberg. — A semialgebraic subset of R
n

is the subset of (x1, . . . , xn) in R
n satisfying a boolean combination of polynomial

equations and inequalities with real coefficients. In other words, the semialgebraic

subsets of R
n form the smallest class SAn of subsets of R

n such that:

1) If P ∈ R[X1, . . . , Xn], then

{
x ∈ R

n ; P (x) = 0
}
∈ SAn and

{
x ∈ R

n ; P (x) > 0
}
∈ SAn.

2) If A ∈ SAn and B ∈ SAn, then

A ∪B ∈ SAn, A ∩B ∈ SAn and R
n \A ∈ SAn.

The fact that a subset of R
n is semialgebraic does not depend on the choice of

affine coordinates. Some stability properties of the class of semialgebraic sets follow

immediately from the definition.

1) All algebraic subsets of R
n are in SAn. Recall that an algebraic subset is a

subset defined by a finite number of polynomial equations

P1(x1, . . . , xn) = · · · = Pk(x1, . . . , xn) = 0.

2) SAn is stable under the boolean operations, i.e. finite unions and intersections

and taking complement. In other words, SAn is a Boolean subalgebra of the

powerset P(Rn).

3) The cartesian product of semialgebraic sets is semialgebraic. If A ∈ SAn and

B ∈ SAp, then A× B ∈ SAn+p.

Sets are not sufficient, we need also maps. Let A ⊂ R
n be a semialgebraic set.

A map f : A→ R
p is said to be semialgebraic if its graph Γ(f) ⊂ R

n ×R
p = R

n+p

is semialgebraic.

For instance, the polynomial maps and the regular maps (i.e. those maps whose

coordinates are rational functions such that the denominator does not vanish) are

semialgebraic. The function x 7→
√

1 − x2 for |x| ≤ 1 is semialgebraic.
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The most important stability property of semialgebraic sets is known as “Tarski-

Seidenberg theorem”. This central result in semialgebraic geometry is not obvious

from the definition.

Theorem 1.1(Tarski-Seidenberg). — Let A be a semialgebraic subset of R
n+1 and

π : R
n+1 −→ R

n,

the projection on the first n coordinates. Then π(A) is a semialgebraic subset of R
n.

It follows from the Tarski-Seidenberg theorem that images and inverse images of

semialgebraic sets by semialgebraic maps are semialgebraic. Also, the composition of

semialgebraic maps is semialgebraic. Other consequences are the following.

Let A ⊂ R
n be a semialgebraic set; then its closure clos(A) is semialgebraic and

the function “distance to A” on R
n is semialgebraic.

. A Nash manifold M ⊂ R
n is an analytic submanifold which is a semialgebraic

subset.

. A Nash map M → R
p is a map which is analytic and semialgebraic.

1.2. Cell decomposition and stratification. — The semialgebraic subsets of the

line are very simple to describe: they are the finite unions of points and open intervals.

We cannot hope for such a simple description of semialgebraic subsets of R
n, n > 1.

However, we have that every semialgebraic set has a finite partition into semialgebraic

subsets diffeomorphic to open boxes (i.e. cartesian product of open intervals). We give

a name to these pieces:

Definition 1.2. — A (Nash) cell in R
n is a (Nash) submanifold of R

n which is (Nash)

diffeomorphic to an open box (−1, 1)d (d is the dimension of the cell).

Every semialgebraic set can be decomposed into a disjoint union of Nash cells.

More precisely:

Theorem 1.3. — Let A1, . . . , Ap be semialgebraic subsets of R
n. Then there exists a

finite semialgebraic partition of R
n into Nash cells such that each Aj is a union of

some of these cells.

This cell decomposition is a consequence of the so-called “cylindrical algebraic de-

composition”(cad), which is the main tool in the study of semialgebraic sets. Actually,

the Tarski-Seidenberg theorem can be proved by using cad.

A cad of R
n is a partition of R

n into finitely many semialgebraic subsets (the cells

of the cad), satisfying certain properties. We define a cad of R
n by induction on n.

. A cad of R is a subdivision by finitely many points a1 < · · · < a`. The cells are

the singletons {ai} and the open intervals delimited by these points.
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. For n > 1, a cad of R
n is given by a cad of R

n−1 and, for each cell C of R
n−1,

Nash functions

ζC,1 < · · · < ζC,`C
: C −→ R.

The cells of the cad of R
n are the graphs of the ζC,j and the bands in the

cylinders C × R delimited by these graphs.

Observe that every cell of a cad is indeed Nash diffeomorphic to an open box. This

is easily proved by induction on n.

The main result about cad is that, given any finite family A1, . . . , Ap of semi-

algebraic subsets of R
n, one can construct a cad of R

n such that every Aj is a union

of cells of this cad. This gives theorem 1.3.

Moreover, the cell decomposition of theorem 1.3 can be assumed to be a stratifi-

cation: this means that for each cell C, the closure clos(C) is the union of C and of

cells of smaller dimension. This property of incidence between the cells may not be

satisfied by a cad (where the cells have to be arranged in cylinders whose directions

are given by the coordinate axes), but it can be obtained after a generic linear change

of coordinates in R
n. In addition, one can ask the stratification to satisfy a local

triviality condition.

Definition 1.4. — Let S a finite stratification of R
n into Nash cells; then we say that

S is locally (semialgebraically) trivial if for every cell C of S, there exist a neighbor-

hood U of C and a (semialgebraic) homeomorphism

h : U −→ C × F,

where F is the intersection of U with the normal space to C at a generic point of C,

and, for every cell D of S, h(D ∩ U) = C × (D ∩ F ).

Figure 1. Local triviality: a neighborhood of C is homeomorphic to C × F .

Theorem 1.5. — Let A1, . . . , Ap be semialgebraic subsets of R
n. Then there exists a

finite semialgebraic stratification S of R
n into Nash cells such that

. S is locally trivial,

. every Aj is a union of cells of S.
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1.3. Connected components, dimension. — Every Nash cell is obviously arc-

wise connected. Hence, from the decomposition of a semialgebraic set into finitely

many Nash cells, we obtain:

Proposition 1.6. — A semialgebraic set has finitely many connected components, which

are semialgebraic.

The cell decomposition also leads to the definition of the dimension of a semi-

algebraic set as the maximum of the dimensions of its cells. This works well.

Proposition 1.7. — Let A ⊂ R
n be a semialgebraic set, and let A =

⋃p
i=1 Ci be a

decomposition of A into a disjoint union of Nash cells Ci. The number

max
{

dim(Ci), i = 1, . . . , p
}

does not depend on the decomposition. The dimension of A is defined to be this num-

ber.

The dimension is even invariant by any semialgebraic bijection (not necessarily

continuous):

Proposition 1.8. — Let A be a semialgebraic subset of R
n, and f : S → R

k a semi-

algebraic map (not necessarily continuous). Then

dim f(A) ≤ dimA.

If f is one-to-one, then

dim f(A) = dimA.

Using a stratification, we obtain immediately the following result.

Proposition 1.9. — Let A be a semialgebraic subset of R
n. Then

dim
(
clos(A) \A

)
< dim(A).

1.4. Triangulation. — First we fix the notation. A k-simplex σ in R
n

(where 0 ≤ k ≤ n) is the convex hull of k + 1 points a0, . . . , ak which are not

contained in a (k − 1)-affine subspace; the points ai are the vertices of σ. A (proper)

face of σ is a simplex whose vertices form a (proper) subset of the set of vertices of σ.

The open simplex
◦
σ associated to a simplex σ is σ minus the union of its proper

faces. A map f : σ → R
k is called linear if f(

∑k
i=0 λiai) =

∑k
i=0 λif(ai) for every

(k + 1)-tuple of nonnegative real numbers λi such that
∑k

i=0 λi = 1.

A finite simplicial complex in R
n is a finite set K of simplices such that

. every face of a simplex of K is in K,

. the intersection of two simplices in K is either empty or a common face of these

two simplices.
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