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Abstract. — Arc-symmetric subsets of a real analytic manifold are the subsets which
satisfy the following test: given an analytic arc, then either the arc meets the set
at isolated points or it is entirely included in the set. Arc-symmetric semialgebraic
subsets of an affine space form a family which contains all connected (even analytic)
components of real algebraic sets. Taking the sets of this family as closed sets we
obtain a noetherian topology AR on R

n, stronger than the Zariski topology. We
show that the AR topology has similar properties to the Zariski one in the complex
algebraic case, consequently we obtain some new topological methods in the real
algebraic geometry. As an application we prove that injective regular self-maps of
real algebraic sets are surjective, this is a real version of an analogous theorem of
Ax for algebraically closed fields. We give a proof of a result of Kucharz that the
homology classes with Z2 coefficients of compact Nash manifolds can be realised by
the fundamental classes of arc-symmetric semialgebraic sets.

Résumé(Ensembles symétriques par arcs et applications arc-analytiques). — Les en-
sembles symétriques par arcs d’une variété analytique réelle sont les sous-ensembles
vérifiant la condition : un arc analytique rencontre l’ensemble uniquement en des
points isolés, ou bien est entièrement contenu dans l’ensemble. Les ensembles semi-
algébriques symétriques par arcs d’un espace affine forment une famille contenant
toutes les composantes connexes (même celles analytiques) des ensembles algébriques
réels. En prenant cette famille de parties pour collection de fermés, on obtient
une topologie noethérienne AR sur R

n plus fine que la topologie de Zariski. On
montre que la topologie AR possède des propriétés similaires à celle de Zariski dans
le cas algébrique complexe. On en déduit de nouvelles méthodes topologiques en
géométrie algébrique réelle. Comme application nous montrons notamment que toute
application injective et régulière d’un ensemble algébrique réel dans lui-même est
surjective. C’est une version réelle du théorème d’Ax du cas algébriquement clos.
Nous donnons aussi une preuve d’un résultat de Kucharz : toute classe d’homologie,
à coefficients dans Z2, d’une variété de Nash compacte, se réalise comme classe
fondamentale d’un sous-ensemble semi-algébrique symétrique par arcs.
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1. Introduction

The purpose of this paper is to introduce the reader to the technique of arc-

symmetric sets and arc-analytic mappings. For reader’s convenience we include some

exercises in the text and also state some open questions which can motivate further

research.

Arc-symmetric sets and arc-analytic functions were introduced in [23] by the first-

named author. One of the motivation was a striking difference between real algebraic

(or analytic) geometry and the geometry over the field of complex numbers or more

generally over an algebraically closed field. In the complex case the topology is ad-

equate to the algebra; for instance the irreducible sets are connected in the strong

topology. Over reals the irreducible nonsingular cubic C = {x3 − x = y2} has two

connected components: Ec which is compact and En which is noncompact. Now

let us take the cone C̃ = {x3 − xz2 = y2} over the curve C, geometrically we place

the curve C in the plane {z = 1} in R3 and we draw lines trough the origin and the

points of C. We have C̃ = Ẽc ∪ Ẽn, where Ẽc and Ẽn are the cones correspond-

ing to the curves Ec and En. Clearly C̃ is a connected irreducible algebraic subset

of R3. Now blow up the origin in R3 and observe that the strict transform of C̃

is just C × R = (Ec × R) ∪ (En × R), so it has again two connected components

and is irreducible as an algebraic set. So we see that the “components” Ẽc and Ẽn

persist. In other words from geometrico-topological point of view the set C̃ is not

irreducible but the components we want to exhibit are finer than the connected com-

ponents of C̃. Actually our arc-symmetric semialgebraic sets will allow us to detect

the “components” Ẽc and Ẽn.

Arc-symmetric subsets of a real analytic manifold are the subsets which satisfy the

following test: given an analytic (parametrized) arc, then either the arc meets the set

at isolated points or it is entirely included in the set. Arc-symmetric semialgebraic

subsets of an affine space form a family which contains all connected (even analytic)

components of real algebraic sets. Taking the sets of this family as closed sets we

define a topology AR on Rn, we prove that this topology is actually noetherian, and

stronger than the Zariski topology. Moreover the AR-irreducible components are

connected (and closed) for the strong topology. So, to some extent, the AR topology

is similar to the Zariski topology in the complex case and it is well known how powerful

are topological methods in the complex case.

At the beginning one of the target applications of this theory was the study of the

problem: let X ⊂ Rn be an algebraic set, assume that f : X → X is regular (restric-

tion of a polynomial) and injective, is it true that f is surjective ? It was know that

the answer was positive for X complex algebraic (or more generally for X algebraic

over algebraically closed field) by Ax’s theorem [2]. Let us recall that the result of

Ax was established by means of model theory. In the real case the positive answer to

the question of surjectivity of injective endomorphism was obtained only in the case
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where X is nonsingular by A. Borel [10], see also [8]. The general case, when X is

a real algebraic set (possibly singular) was solved only recently by the first-named

author in [26], his proof uses arc-symmetric semialgebraic sets, in particular the fact

that each such set carries a fundamental class. Recently the second-named author

gave in [38] a simplified proof of the surjectivity theorem (in a slightly more general

case). This proof also uses the arc-symmetric semialgebraic sets but in a more topo-

logical way and shows moreover that an injective endomorphism is a homeomorphism.

In chapter 5 we give a full proof of the surjectivity theorem.

In the second chapter we recall some basic facts about analytic arcs, their

parametrizations and equivalencies. We prove the main results (mentioned above) on

arc-symmetric semialgebraic sets. We recall also the notion of arc-analytic function

introduced in [23]. Let M,N be real analytic manifolds, we say that a function

f : M → N is arc-analytic if f ◦ γ is analytic for every analytic arc γ. Clearly the

zero sets of arc-analytic functions are arc-symmetric. Arc-analytic maps are natural

morphisms for the category of arc-symmetric sets, actually they are closely related to

blow-analytic maps introduced by T.C. Kuo in 70’s. A mapping f : M → N is called

blow-analytic if there exists σ : M̃ → M a locally finite composition of blowing-ups

with smooth centers such that f ◦ σ is analytic. Clearly each blow-analytic map

is arc-analytic (and subanalytic). It was conjectured by K. Kurdyka and shown by

Bierstone and Milman [5], see also [36], that the converse is true in the semialgebraic

category. The full converse statement in the general (subanalytic case) remains an

open problem, where only some partial result based on the local blowing-up procedure

is known, cf. [5] and [36].

In chapter 3 we study the local topological properties of arc-symmetric sets. We

use the technique of the Euler integral of constructible functions, in a similar way as

for the real algebraic sets as explained in [11]. In particular we show that the arc-

symmetric sets satisfy the same local topological properties as the real algebraic ones,

they are (mod 2) Euler spaces, for instance. This similarity is more transparent if we

restrict ourselves to the compact arc-symmetric sets or, in general, to the finite set-

theoretic combinations of compact arc-symmetric sets, called the AS-sets. For such

sets we do not need the properness assumption to show that the image of an AS-set

by an injective map with an AS graph is again an AS-set. This is crucial for the

proof of surjectivity of injective endomorphisms.

In chapter 3 we recall also a result of Kurdyka and Rusek [27] which says that

πn−d−1(Rn \X) 6= {0} for X arc-symmetric and semialgebraic of dimension d. It im-

plies easily theorem of Bia lynicki-Birula and Rosenlicht [4] about surjectivity of in-

jective polynomial maps from Rn to Rn.

In chapter 4 we present a formal axiomatic approach to the AS sets and the

algebraically constructible sets (the finite set-theoretic combinations of real algebraic

sets) based on the notion of constructible categories of [38].
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In chapter 5 we propose two fast applications of arc-symmetric sets. Firstly we

give a topological proof of surjectivity theorem. Secondly we give a proof of a recent

observation by W. Kucharz [21] and K. Kurdyka that the homology classes with Z2

coefficients of compact Nash manifolds can be realised by the fundamental classes of

arc-symmetric semialgebraic sets (recall that this is false if we require these sets to

be algebraic).

Recently the arc-symmetric sets appeared as well in the construction of new invari-

ants in the singularity theory in conjuction with another theory describing arc spaces:

the motivic integration. Recall that for the real algebraic sets new additive invariants,

called the virtual Betti numbers, have been proposed in [32]. These invariants have

been extended to the AS-sets by Fichou in [13]. The additivity of this invariants allow

one to construct new invariants of real analytic function germs, analogous to the zeta

function of Denef and Loeser, that are used to classify these germs with respect to the

blow-analytic and the blow-Nash equivalence. We refer the reader to [20], [13], [14],

and [17] of this volume, for details. It is our strong conviction that the arc-symmetric

sets and the arc-analytic mapping give a natural framework in which many ideas and

techniques of motivic integration can be adapted to the real algebraic and analytic

geometry, and the study of real analytic singularities.

2. Arc-symmetric subsets of affine space

2.1. Analytic arcs. — By an analytic arc in an analytic manifold M we mean an

analytic non-constant mapping γ : (−ε, ε) → M , for some ε > 0. The image of the

germ of γ at 0 is well-defined. Indeed, γ as a mapping to a neighborhood of γ(0), is

finite and proper, (cf. [28]). The image of the germ of γ may be of two topological

types.

If γ is injective, then the image of the germ of γ is an irreducible analytic germ

of dimension 1, which is homeomorphic to the germ of the interval (−α, α) at 0.

If γ is not injective (in a neighborhood of 0), then, as we prove below, γ(t) = η(tk),

where k = 2d and η is an analytic injective arc. So in this case the image of the germ

of γ is homeomorphic to the germ of [0, α) at 0, it is a half-branch of an irreducible

analytic germ of dimension 1. What is crucial for our theory is the fact that one

half-branch determines the other.

Later on we shall not distinguish between an arc and its germ at 0. In the se-

quel we will work rather with the images of analytic arcs (by abuse of language we

will call them sometimes analytic arcs as well). To explain when two injective ana-

lytic arcs have the same image we define an equivalence relation on the space of all

(not necessarily injective) analytic arcs.

We say that two arcs γ and γ′ are equivalent if there exists η a germ of analytic

arc, and h, h′ two germs of analytic homeomorphisms of neighborhoods of 0 ∈ R,
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such that

(1) γ = η ◦ h and γ′ = η ◦ h′.

For instance γ(t) = (t2, t3) and γ′ = (t6, t9) are equivalent, where η = γ, h(t) = t,

and h′(t) = t3. Note that, in general, an analytic homeomorphism has not an analytic

inverse. This is an equivalence relation, but the transitivity is not obvious.

Since we will work locally we may assume that M = Rn. If γ : (−ε, ε) → Rn is an

analytic arc, that is the components of γ are convergent power series, then z 7→ γ(z)

is a well defined holomorphic function on {z ∈ C : |z| < ε′}, for some ε ≥ ε′ > 0.

Note that γ(z) is a holomorphic function which is real, that is γ(z̄) = γ(z). We state

now a classical fact about germs of complex analytic arcs. Recall that the image of

such an arc is homeomorphic to a disc.

Lemma 2.1. — Let γ : {z ∈ C; |z| < ε} → Cn be holomorphic and non-constant. Then

there exists an integer k ≥ 1 and η : {z ∈ C; |z| < δ} → Cn an injective holomorphic

mapping such that, after a holomorphic change of variable in a neighborhood of 0 ∈ C,

we have

γ(z) = η(zk).

The integer k is uniquely determined. Moreover, if γ is real, then η and the change

of variables can be chosen real.

We give a sketch of the proof. Let us assume that γ(0) = 0 and write γ =

(γ1, . . . , γn), where γi : {|z| < ε} :→ C are holomorphic functions. After a suitable

permutation of coordinates in Cn we may assume that the orders of γi’s are increasing.

In particular γ1 is nonconstant so we can write γ1(z) = z`u(z), with some integer `

and u holomorphic function, u(0) 6= 0. Note that w = zu(z)1/` defines a holomorphic

change of variable in a neighborhood of 0 ∈ C. Observe that this change of variable

is real if γ1 is real. Clearly γ1(w) = w`. So we may assume that

γ(z) =
(
z`, γ2(z), . . . , γn(z)

)
,

where γi(z) =
∑∞

ν=1 a
i
νz

ν are convergent power series. Let k be the greatest common

divisor of ` and the set of all ν ∈ N such that ai
ν 6= 0 for some i ∈ {2, . . . , n}. Thus

we can write γ(z) = η(zk), where

η(z) =
(
z`/k, η2(z), . . . , ηn(z)

)
and ηi(z) =

∞∑

ν=1

ai
νz

ν/k.

But now the greatest common divisor of exponents of all powers which appear ef-

fectively in η is equal to 1, hence η must be injective (see e.g. Walker [45], chap. IV,

thm. 2.1). Clearly, if γ is real, then η is real as well.

Remark 2.2. — Note that in lemma 2.1 the injective parametrization η is determined

up to composition with a biholomorphism of a neighborhood of 0 ∈ C. We will call

such a parametrization irreducible.
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