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ALGEBRAICALLY

CONSTRUCTIBLE FUNCTIONS:

REAL ALGEBRA AND TOPOLOGY

by

Clint McCrory & Adam Parusiński

Abstract. — Algebraically constructible functions connect real algebra with the topol-
ogy of algebraic sets. In this survey we present some history, definitions, properties,
and algebraic characterizations of algebraically constructible functions, and a de-
scription of local obstructions for a topological space to be homeomorphic to a real
algebraic set.

Résumé(Fonctions algébriquement constructibles : algèbre réelle et topologie)
Les fonctions algébriquement constructibles établissent un lien entre l’algèbre

réelle et la topologie des ensembles algébriques réels. Dans cet article on présente
l’historique, les définitions, les propriétés basiques et des caractérisations algébriques
des fonctions algébriquement constructibles, ainsi qu’une description de l’obstruction
locale pour qu’un espace topologique soit homéomorphe à un ensemble algébrique
réel.

More than three decades ago Sullivan proved that the link of every point in a

real algebraic set has even Euler characteristic. Related topological invariants of real

algebraic singularities have been defined by Akbulut and King using resolution towers

and by Coste and Kurdyka using the real spectrum and stratifications.

Sullivan’s discovery was motivated by a combinatorial formula for Stiefel-Whitney

classes. Deligne interpreted these classes as natural transformations from con-

structible functions to homology. Constructible functions have interesting operations

inherited from sheaf theory: sum, product, pullback, pushforward, duality, and

integral. Duality is closely related to a topological link operator. To study the

topology of algebraic sets the authors introduced algebraically constructible functions.

Using the link operator we have defined many local invariants which generalize those

of Akbulut-King and Coste-Kurdyka.
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70 C. MCCRORY & A. PARUSIŃSKI

Algebraically constructible functions are interesting from a purely algebraic view-

point. From the theory of basic algebraic sets it follows that if a constructible func-

tion ϕ on an algebraic set of dimension d is divisible by 2d then ϕ is algebraically

constructible. Parusiński and Szafraniec showed that algebraically constructible func-

tions are precisely those constructible functions which are sums of signs of polyno-

mials. Bonnard has given a characterization of algebraically constructible functions

using fans, and she has investigated the number of polynomials necessary to represent

an algebraically constructible function as a sum of signs of polynomials. Pennaneac’h

has developed a theory of algebraically constructible chains using the real spectrum.

In section 1 we briefly discuss the results of Sullivan, Akbulut-King, and Coste-

Kurdyda. In the next section we define algebraically constructible functions and

their operations. In section 3 we discuss the relations of algebraically constructible

functions with real algebra. In the following section we describe how to generate our

local topological invariants. In the final section we raise some questions for future

research. Throughout we consider only algebraic subsets of affine space.

This paper was originally written for the 2001 meeting in Rennes of the Real Al-

gebraic and Analytic Geometry Network (RAAG), and it was posted on the RAAG

website as a state-of-the-art survey. Related survey articles have been written recently

by Coste [15], [13], Bonnard [8], and McCrory [26]. We thank Michel Coste for his

encouragement and insight.

1. Akbulut-King numbers

Let X be a real semialgebraic set in Rn, and let x ∈ X . Let S(x, ε) be the sphere

of radius ε > 0 in Rn centered at x. By the local conic structure lemma [6, (9.3.6)],

for ε sufficiently small the topological type of the space S(x, ε) ∩ X is independent

of ε. This space is called the link of x in X , and it is denoted by lk(x,X).

Our starting point is Sullivan’s theorem [35]:

Theorem 1.1. — If X is a real algebraic set in Rn and x ∈ X then the Euler charac-

teristic χ(lk(x,X)) is even.

For example, the “theta space”X ⊂ R2,

X =
{
(x, y) | x2 + y2 = 1

}
∪

{
(x, y) | − 1 ≤ x ≤ 1, y = 0

}
,

is not homeomorphic to an algebraic set, for the link of the point (1, 0) (or the

point (−1, 0)) in X is three points, which has odd Euler characteristic.

Many proofs of Sullivan’s theorem have been published; see [12], [20], [5, (3.10.4)],

[6, (11.2.2)], [18, (4.4)]. Sullivan’s original idea was to use complexification. First he

proved that the link of x in the complexification XC has Euler characteristic 0, and

then he used that lk(x,X) is the fixed point set of complex conjugation on lk(x,XC)
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to deduce that

χ
(
lk(x,X)

)
≡ χ

(
lk(x,XC)

)
(mod 2).

Mather [25, p. 221] gave a proof that the link L of a point in a complex algebraic set

has Euler characteristic 0 by constructing a tangent vector field on L which integrates

to a nontrivial flow of L.

The following result puts Sullivan’s theorem in a more general context (cf. [3,

(2.3.2)]).

Theorem 1.2. — If X and Y are real algebraic sets with Y irreducible and f : X → Y

is a regular map, there is an algebraic subset Z of Y with dimZ < dimY such that

the Euler characteristic χ(f−1(y)) is constant mod 2 for y ∈ Y \ Z.

In other words, the Euler characteristic is generically constant mod 2 in every family

of real algebraic sets. To deduce Sullivan’s theorem as a corollary let Y = R, x0 ∈ X ,

and f(x) = (x− x0)
2. For y < 0 the fiber f−1(y) is empty, and for y > 0 sufficiently

small, the fiber f−1(y) is lk(x0, X).

Benedetti-Dedò [4] and Akbulut-King [2] proved that Sullivan’s condition is not

only necessary but also sufficent in low dimensions: If X is a compact triangulable

space of dimension less than or equal to 2, and the link of every point has even Euler

characteristic, then X is homeomorphic to a real algebraic set. (The link of a point

in a triangulable space is the boundary of a simplicial neighborhood.) A triangulable

space such that the link of every point has even Euler characteristic is called an Euler

space.

Akbulut and King [3] showed that the situation in dimension 3 is more complicated.

They defined four non-trivial topological invariants of a compact Euler space Y of

dimension at most 2, ai(Y ) ∈ Z/2, i = 0, 1, 2, 3 (with ai(Y ) = 0 when dimY < 2).

Let χ2(Y ) be the Euler characteristic mod 2. It is easy to see that if X is an Euler

space then the link of every point of X is an Euler space.

Theorem 1.3. — A compact 3-dimensional triangulable topological space X is homeo-

morphic to a real algebraic set if and only if, for all x ∈ X,

χ2

(
lk(x,X)

)
= 0 and ai

(
lk(x,X)

)
= 0, i = 0, 1, 2, 3.

Akbulut and King’s invariants arise from a combinatorial analysis of the resolution

of singularities of an algebraic set. The elementary definition of these Akbulut-King

numbers and computations of examples can be found in Akbulut and King’s mono-

graph [3, chap. VII, pp. 190–197]. (In the terminology of [3, (7.1.1)], ai(lk(x,X)) is

the mod 2 Euler characteristic of the link of x in the characteristic subspace Zi(X).)

The depth of the method of resolution towers is shown by the remarkable result that

the vanishing of the Akbulut-King numbers gives a sufficient condition for a triangu-

lable 3-dimensional space to be homeomorphic to an algebraic set. Chapter I of [3] is

an introduction to their methods, with informative examples.
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Another descendant of Sullivan’s theorem is due to Coste and Kurdyka [16]:

Theorem 1.4. — Let X be an algebraic set and let V be an irreducible algebraic subset.

For x ∈ V the Euler characteristic of the link of x in X is generically constant mod 4:

There is an algebraic subset W of V with dimW < dimV such that χ(lk(x,X)) is

constant mod 4 for x ∈ V \W .

This theorem was first proved by Coste [14] when dimX−dimV ≤ 2 using chains

of specializations of points in the real spectrum. The general case was proved topolog-

ically using stratifying families of polynomials. It can also be proved using Akbulut

and King’s topological resolution towers (see [3], exercise on p. 192).

Using the same techniques Coste and Kurdyka defined invariants mod 2k asso-

ciated to chains X1 ⊂ X2 ⊂ · · · ⊂ Xk of algebraic subsets of X (see [16, thm. 4]).

Furthermore they used their mod 4 and mod 8 invariants to recover the Akbulut-King

numbers. Using a relation between complex conjugation and the monodromy of the

complex Milnor fibre of an ordered family of functions, the authors [28] reinterpreted

and generalized the Coste-Kurdyka invariants as Euler characteristics of iterated links.

2. Constructible Functions

Algebraically constructible functions were introduced by the authors [27] as a vehi-

cle for using the ideas of Coste and Kurdyka to generate new Akbulut-King numbers.

Let X be a real semialgebraic set. A constructible function on X is an integer-

valued function

ϕ : X −→ Z

which can be written as a finite sum

(1) ϕ =
∑

mi1Xi
,

where for each i, Xi is a semialgebraic subset of X , 1Xi
is the characteristic function

of Xi, and mi is an integer.

The set of constructible functions on X is a ring under pointwise sum and product.

If f : X → Y is a semialgebraic map and ϕ is a constructible function on Y , the

pullback f∗ϕ is the constructible function defined by

(2) f∗ϕ(x) = ϕ
(
f(x)

)
.

The operations of pushforward and duality are defined using the Euler character-

istic. If ϕ has compact support one may assume that the sets Xi in (1) are compact,

and the Euler integral is defined by

(3)

∫

X

ϕdχ =
∑

miχ(Xi).

The Euler integral is additive, and it does not depend on the choice of representa-

tion (1) of ϕ.
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If f : X → Y is a proper semialgebraic map and ϕ is a constructible function on X ,

the pushforward, f∗ϕ is the constructible function on Y given by

(4) f∗ϕ(y) =

∫

f−1(y)

ϕdχ.

Suppose that X is a semialgebraic set in Rn. If ϕ is a constructible function on X ,

the link Λϕ is the constructible function on X defined by

(5) Λϕ(x) =

∫

S(x,ε)∩X

ϕdχ,

for ε > 0 sufficiently small.

The dual Dϕ is defined by

(6) Dϕ = ϕ− Λϕ.

The operations sum, product, pullback, pushforward, and dual come from sheaf

theory. Operations on constructible functions have been studied by Kashiwara and

Schapira [21], [34] and by Viro [36].

Now suppose that X is a real algebraic set. A provisional definition of algebraically

constructible functions would be to require the sets Xi in (1) to be algebraic subsets

of X . But the image of an algebraic set by a proper regular map is not necessarily

algebraic, so this class of functions – which we call strongly algebraically constructible –

is not preserved by the pushforward operation. To remedy this defect we make the

following definition.

Let X be a real algebraic set. An algebraically constructible function on X is an

integer-valued function which can be written as a finite sum

(7) ϕ =
∑

mifi∗1Zi
,

where for each i, Zi is an algebraic set, 1Zi
is the characteristic function of Xi,

fi : Zi → X is a proper regular map, and mi is an integer.

Clearly the sum of algebraically constructible functions is algebraically con-

structible. The product of algebraically constructible functions is algebraically

constructible because the fiber product of algebraic sets over X is an algebraic set

over X : If f1 : Z1 → X and f2 : Z2 → X are proper regular maps, then so is the

fiber product f : Z1 ×X Z2 → X ,

Z1 ×X Z2 −−−−→ Z2y
yf2

Z1
f1

−−−−−−−→X

where Z1 ×X Z2 = {(z1, z2) | f1(z1) = f2(z2)} and f(z1, z2) = f1(z1) = f2(z2).

Furthermore, for all x ∈ X , f−1(x) = f−1
1 (x) × f−1

2 (x).
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