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DISTORTION IN GROUPS OF CIRCLE AND SURFACE

DIFFEOMORPHISMS

by

John Franks

Abstract. — If G is a finitely generated group with generators {g1, . . . , gj} then an
infinite order element f ∈ G is a distortion element of G provided lim inf

n→∞

|fn|/n = 0,

where |fn| is the word length of fn in the generators. We survey a number of results
concerning this concept and its application to group actions on surfaces, especially
those which preserve a Borel measure. Let S be a closed orientable surface and let
Diff(S)0 denote the identity component of the group of C1 diffeomorphisms of S. One
of the results we discuss asserts that if S has genus at least two and if f is a distortion
element in some finitely generated subgroup of Diff(S)0, then supp(µ) ⊂ Fix(f) for

every f -invariant Borel probability measure µ. We also compare results for surface
diffeomorphisms with analogous results for the circle.

Résumé(Distorsion pour les groupes de difféomorphismes du cercleet des surfaces)
Si G est un groupe finiment engendré par des générateurs {g1, . . . , gj}, un élément

d’ordre infini f ∈ G est un élément de distorsion de G lorsque lim inf
n→∞

|fn|/n = 0, où

|fn| est la longueur de fn comme mot en les générateurs. Nous présentons un pa-
norama de nombreux résultats autour de cette notion et donnons des applications
aux actions de groupes sur les surfaces, notamment dans le cas où une mesure de
Lebesgue est préservée. Soit S une surface fermée orientable et soit Diff(S)0 la com-
posante de l’identité dans le groupe des difféomorphismes de classe C1 de S. Un des
résultats présentés affirme que si le genre de S est au moins égal à 2, et si f est
un élément de distorsion dans un sous-groupe de Diff(S)0 finiement engendré, alors
supp(µ) ⊂ Fix(f) pour toute mesure de probabilité borélienne µ qui est invariante par
f . Nous comparons également certains résultats obtenus pour les difféomorphismes
de surfaces avec des résultats analogues pour les difféomorphismes du cercle.

1. Introduction

In his seminal article [18] S. Smale outlined a program for the investigation of the
properties of generic smooth dynamical systems. He proposed as definition of the
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object of study the smooth action of a non-compact Lie group G on a manifold M ;
i.e., a smooth function

f : G ×M →M

satisfying f(g1, f(g2, x)) = f(g1g2, x) and f(e, x) = x for all x ∈M and all g1, g2 ∈ G,
where e is the identity of G. Equivalently one can consider the homomorphism

φ : G → Diff(M)

from G to the group of diffeomorphisms of M given by φ(g)(x) = f(g, x). The primary
motivation, and by far the most studied case, has been that where G is either the Lie
group R of real numbers or the discrete group Z. As noted in the Introduction to this
volume this study grew out of an interest in solution of differential equations where
the group R or Z represents time (continuous or discrete).

In this article we will focus on the far less investigated case where G is a subgroup
of a Lie group of dimension greater than one. The continuous and discrete cases when
G is R or Z share many characteristics with each other and it is often clear how to
formulate (or even prove) an analogous result in one context based on a result in the
other. Very similar techniques can be used in the two contexts. However, when we
move to more complicated groups the difference between the actions of a connected
Lie group and the actions of a discrete subgroup become much more pronounced. One
must start with new techniques in the investigation of actions of a discrete subgroup
of a Lie group.

As in the case of actions by R and Z one can impose additional structures on M ,
such as a volume form or symplectic form, and require that the group G preserve
them. For this article we consider manifolds of dimension two where the notion of
volume form and symplectic form coincide. As it happens many of the results we
will discuss are valid when a weaker structure, namely a Borel probability measure,
is preserved.

The main object of this article is to provide some context for, and an exposition
of, joint work of the author and Michael Handel which can be found in [8].

The ultimate aim is the study of the (non)-existence of actions of lattices in a large
class of non-compact Lie groups on surfaces. A definitive analysis of the analogous
question for actions on S1 was carried out by É. Ghys in [9]. Our approach is topo-
logical and insofar as possible we try to isolate properties of a group which provide
the tools necessary for our analysis. The two key properties we consider are almost
simplicity of a group and the existence of a distortion element. Both are defined and
described below.

We will be discussing groups of homeomorphisms and diffeomorphisms of the circle
S1 and of a compact surface S without boundary. We will denote the group of C1

diffeomorphisms which preserve orientation by Diff(X) where X is S1 or S. Orien-
tation preserving homeomorphisms will be denoted by Homeo(X). If µ is a Borel
probability measure on X then Diffµ(X) and Homeoµ(X) will denote the respective
subgroups which preserve µ. Finally for a surface S we will denote by Diffµ(S)0 the
subgroup of Diffµ(S) of elements isotopic to the identity.

An important motivating conjecture is the following.
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Conjecture 1.1(R. Zimmer [21]). — Any C∞ volume preserving action of SL(n,Z) on
a compact manifold with dimension less than n, factors through an action of a finite
group.

This conjecture suggests a kind of exceptional rigidity of actions of SL(n,Z) on
manifolds of dimension less than n. The following result of D. Witte, which is a
special case of his results in [20], shows that in the case of n = 3 and actions on S1

there is indeed a very strong rigidity.

Theorem 1.2(D. Witte [20]). — Let G be a finite index subgroup of SL(n,Z) with n ≥
3. Any homomorphism

φ : G → Homeo(S1)

has a finite image.

Proof. — We first consider the case n = 3. If G has finite index in SL(3,Z) then
there is k > 0 such that

a1 =




1 k 0
0 1 0
0 0 1



 , a2 =




1 0 k
0 1 0
0 0 1



 , a3 =




1 0 0
0 1 k
0 0 1



 ,

a4 =




1 0 0
k 1 0
0 0 1



 , a5 =




1 0 0
0 1 0
k 0 1



 , and a6 =




1 0 0
0 1 0
0 k 1



 ,

are all in G. We will show that each of the ak
i is in the kernel of φ. A result of Margulis

(see Theorem 3.2 below) then implies that the kernel of φ has finite index. This result
also implies that the case n = 3 is sufficient to prove the general result.

A straightforward computation shows that [ai, ai+1] = e and [ai−1, ai+1] = a±k
i ,

where the subscripts are taken modulo 6. Indeed [am
i−1, a

n
i+1] = a±mnk

i .

Let gi = φ(ai). The group H generated by g1 and g3 is nilpotent and contains gk
2

in its center. Since nilpotent groups are amenable there is an invariant measure for
the group H and hence the rotation number ρ : H → R/Z is a homomorphism. Since
gk
2 is a commutator, it follows that gk

2 has zero rotation number and hence it has a
fixed point. A similar argument shows that for all i, gk

i has a fixed point.
We will assume that one of the gk

i , for definiteness say gk
1 , is not the identity and

show this leads to a contradiction.
Let U1 be any component of S1 \ Fix(gk

1 ). Then we claim that there is a U2 ⊂ S1

which properly contains U1 and such that U2 is either a component of S1 \Fix(gk
6 ) or

a component of S1 \ Fix(gk
2 ). We postpone the proof of the claim and complete the

proof.
Assuming the claim suppose that U2 is a component of S1 \Fix(gk

2 ) the other case
being similar. Then again applying the claim, this time to gk

2 we see there is U3 which
properly contains U2 and must a component of S1 \Fix(gk

3 ) since otherwise U1 would
properly contain itself. But repeating this we obtain proper inclusions

U1 ⊂ U2 . . . U5 ⊂ U6 ⊂ U1,
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which is a contradiction. Hence gk
1 = id which implies that ak

1 ∈ Ker(φ). A further
application of the result of Margulis (Theorem 3.2 below) implies that Ker(φ) has
finite index in G and hence that φ(G) is finite.

To prove the claim we note that U1 is an interval whose endpoints are fixed by gk
1

and we will will first prove that it is impossible for these endpoints also to be fixed
by gk

6 and gk
2 . This is because in this case we consider the action induced by the

two homeomorphisms {gk
6 , g

k
2} on the circle obtained by quotienting U1 by gk

1 . These

two circle homeomorphisms commute because [gk
6 , g

k
2 ] = g±k2

1 on R so passing to the
quotient where g1 acts as the identity we obtain a trivial commutator. It is an easy
exercise to see that if two degree one homeomorphisms of the circle, f and g, commute
then any two lifts to the universal cover must also commute. (E.g. show that [f̃ , g̃]n

is uniformly bounded independent of n.) But this is impossible in our case because

the universal cover is just U1 and [gk
6 , g

k
2 ] = g±k2

1 6= id.
To finish the proof of the claim we note that if U1 contains a point b ∈ Fix(gk

2 )
then gnk

1 (b) ∈ Fix(gk
2 ) for all n and hence

lim
n→∞

gnk
i (b) and lim

n→−∞
gnk

i (b),

which are the two endpoints of U1 must be fixed by gk
2 . A similar argument applies

to gk
6 .

It follows that at least one of gk
6 and gk

2 has no fixed points in U1 and does not fix
both endpoints. I.e. there is U2 as claimed.

It is natural to ask the analogous question for surfaces.

Example 1.3. — The group SL(3,Z) acts smoothly on S2 by projectivizing the stan-
dard action on R3.

Consider S2 as the set of unit vectors in R3. If x ∈ S2 and g ∈ SL(3,Z), we can
define φ(g) : S2 → S2 by

φ(g)(x) =
gx

|gx| .

Question 1.4. — Can the group SL(3,Z) act continuously or smoothly on a surface of
genus at least one? Can the group SL(4,Z) act continuously or smoothly on S2?

2. Distortion in Groups

A key concept in our analysis of groups of surface homeomorphisms is the following.

Definition 2.1. — An element g in a finitely generated group G is called distorted if
it has infinite order and

lim inf
n→∞

|gn|
n

= 0,

where |g| denotes the minimal word length of g in some set of generators. If G is
not finitely generated then g is distorted if it is distorted in some finitely generated
subgroup.
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It is not difficult to show that if G is finitely generated then the property of being
a distortion element is independent of the choice of generating set.

Example 2.2. — The subgroup G of SL(2,R) generated by

A =

(
1/2 0
0 2

)
and B =

(
1 1
0 1

)

satisfies

A−1BA =

(
1 4
0 1

)
= B4 and A−nBAn = B4n

so B is distorted.

Example 2.3. — The group of integer matrices of the form



1 a b
0 1 c
0 0 1





is called the Heisenberg group.

If

g =




1 1 0
0 1 0
0 0 1



 and h =




1 0 0
0 1 1
0 0 1





then their commutator f = [g, h] := g−1h−1gh is

f =




1 0 1
0 1 0
0 0 1



 and f commutes with g and h.

This implies

[gn, hn] = fn2

so f is distorted.
Let ω denote Lebesgue measure on the torus T2..

Example 2.4(G. Mess[14]). — In the subgroup of Diffω(T2) generated by the auto-
morphism given by

A =

(
2 1
1 1

)

and a translation T (x) = x + w where w 6= 0 is parallel to the unstable manifold of
A, the element T is distorted.

Proof. — Let λ be the expanding eigenvalue of A. The element hn = AnTA−n

satisfies hn(x) = x + λnw and gn = A−nTAn satisfies gn(x) = x + λ−nw. Hence
gnhn(x) = x+ (λn + λ−n)w. Since trAn = λn + λ−n is an integer we conclude

T trAn

= gnhn, so |T trAn| ≤ 4n+ 2.

But
lim

n→∞

n

trAn
= 0,

so T is distorted.
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