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AN INTRODUCTION
TO GALOIS REPRESENTATIONS

AND MODULAR FORMS

by

Takeshi Saito

Abstract. – These notes are based on a series of lectures given at the summer school
held on July 17-29, 2006 at IHÉS. The purpose of the lectures is to explain the basic
ideas in the geometric construction of the Galois representations associated to elliptic
modular forms of weight at least 2.

Motivation

Galois representations associated to modular forms play a central role in modern
number theory. In this introduction, we give a reason why they take such a position.

A goal in number theory is to understand finite extensions of Q. By Galois theory,
it is equivalent to understanding the absolute Galois group GQ = Gal(Q/Q). One
may say that one knows a group if one knows its representations.

Representations are classified by their degrees. Class field theory provides us with a
precise understanding of the representations of degree 1, or characters. By the theorem
of Kronecker-Weber, a continuous character GQ → C× is a Dirichlet character

GQ → Gal(Q(ζN )/Q)→ (Z/NZ)× → C×

for some integer N ≥ 1. If we consider not only complex continuous characters but
also `-adic characters GQ → Q×` for a prime `, we find more characters. For example,
the `-adic cyclotomic character is defined as the composition:

GQ → Gal(Q(ζ`n , n ∈ N)/Q) = lim←−
n

Gal(Q(ζ`n)/Q)→ lim←−
n

(Z/`nZ)× = Z×` ⊂ Q×` .
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The `-adic characters “with motivic origin” are generated by Dirichlet characters and
`-adic cyclotomic characters:

{“geometric” `-adic character of GQ}
= 〈Dirichlet characters, `-adic cyclotomic characters〉

if we use a fancy terminology “geometric,” that will not be explained in this note. For
the definition, we refer to [11].

When we leave the realm of class field theory, the first representations we encounter
are those of degree 2. For `-adic Galois representations of degree 2, we expect to have
(cf. [11]) a similar equality

{odd “geometric” `-adic representations of GQ of degree 2

with distinct Hodge-Tate weights} = {`-adic representations

associated to modular form of weight at least 2},

up to a twist by a power of the cyclotomic character. In other words, the Galois
representations associated to modular forms are the first ones we encounter when we
explore outside the domain of class field theory.

In these notes, we discuss only one direction ⊃ established by Shimura and Deligne
([20], [4]). We will not discuss the other direction ⊂, which is almost established
([13]) after the revolutionary work of Wiles, although it has significant consequences
including Fermat’s last theorem, the modularity of elliptic curves, etc. ([24], [2]).

In Section 1, we recall the definition of modular forms and state the existence of
Galois representations associated to normalized eigen cusp forms. We introduce mod-
ular curves defined over C and over Z[ 1

N ] as the key ingredient in the construction
of the Galois representations, in Section 2. Then, we construct the Galois represen-
tations in the case of weight 2 by decomposing the Tate module of the Jacobian of a
modular curve in Section 3. In the final Section 4, we briefly sketch an outline of the
construction in the higher weight case.

Proofs will be only sketched or omitted mostly. The author apologizes that he also
omits the historical accounts completely. Some more detail can be found in the books
[15, 16].

The author would like to thank the participants of the summer school for pointing
out numerous mistakes and inaccuracies during the lectures.

I would like to acknowledge on this occasion that many of Japanese participants
of the summer school are supported by JSPS Core-to-Core Program 18005 New De-
velopments of Arithmetic Geometry, Motive, Galois Theory, and Their Practical Ap-
plications.
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1. Galois representations and modular forms

1.1. Modular forms. – Let N ≥ 1 and k ≥ 2 be integers and ε : (Z/NZ)× → C× be a
character. We will define the C-vector spaces Sk(N, ε) ⊂Mk(N, ε) of cusp forms and
of modular forms of level N , weight k and character ε. We will see later in §3.4 that
they are of finite dimension by using compactifications of modular curves. For ε = 1,
we write Sk(N) ⊂ Mk(N) for Sk(N, 1) ⊂ Mk(N, 1). For this subsection, we refer to
[10] Chapter 1.

A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if there exists an integer
N ≥ 1 such that Γ ⊃ Γ(N) = Ker(SL2(Z) → SL2(Z/NZ)). In this note, we mainly
consider the congruence subgroups

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ a ≡ 1, c ≡ 0 mod N

}

⊂ Γ0(N) =

{(
a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 mod N

}
.

We identify the quotient Γ0(N)/Γ1(N) with (Z/NZ)× by
(
a b
c d

)
7→ d mod N . Their

indices are given by

[SL2(Z) : Γ0(N)] =
∏
p|N

(p+ 1)pordp(N)−1 = N
∏
p|N

(
1 +

1

p

)
,

[SL2(Z) : Γ1(N)] =
∏
p|N

(p2 − 1)p2(ordp(N)−1) = N2
∏
p|N

(
1− 1

p2

)
.

The action of SL2(Z) on the Poincaré upper half plane H = {τ ∈ C|Im τ > 0} is
defined by

γ(τ) =
aτ + b

cτ + d

for γ =
(
a b
c d

)
∈ SL2(Z) and τ ∈ H. For a holomorphic function f on H, we define a

holomorphic function γ∗kf on H by

γ∗kf(τ) =
1

(cτ + d)k
f(γτ).

If k = 2, we have γ∗(fdτ) = γ∗2 (f)dτ .

Definition 1.1. – Let Γ ⊃ Γ(N) be a congruence subgroup and k ≥ 2 be an integer. We
say that a holomorphic function f : H → C is a modular form (resp. a cusp form) of
weight k with respect to Γ, if the following conditions (1) and (2) are satisfied.

(1) γ∗kf = f for all γ ∈ Γ.
(2) For each γ ∈ SL2(Z), γ∗kf satisfies γ∗kf(τ +N) = γ∗kf(τ) and hence we have a

Fourier expansion γ∗kf(τ) =
∑∞
n=−∞ a n

N
(γ∗kf)qnN where qN = exp(2πi τN ). We require

the condition
a n
N

(γ∗kf) = 0
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be satisfied for n < 0 (resp. n ≤ 0) for every γ ∈ SL2(Z).

We put

Sk(Γ)C = {f |f is a cusp form of weight k w.r.t. Γ}
⊂ Mk(Γ)C = {f |f is a modular form of weight k w.r.t. Γ}

and define Sk(N) = Sk(Γ0(N)). Since Γ0(N) contains Γ1(N) as a normal subgroup,
the group Γ0(N) has a natural action on Sk(Γ1(N)) by f 7→ γ∗kf . Since Γ1(N) acts
trivially on Sk(Γ1(N)), we have an induced action of the quotient Γ0(N)/Γ1(N) =

(Z/NZ)× on Sk(Γ1(N)). The action of d ∈ (Z/NZ)× on Sk(Γ1(N)) is denoted by
〈d〉 and is called the diamond operator. The space Sk(Γ1(N)) is decomposed by the
characters

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)×→C×
Sk(N, ε)

where Sk(N, ε) = {f ∈ Sk(Γ1(N))|〈d〉f = ε(d)f for all d ∈ (Z/NZ)×}. The fixed part
Sk(Γ1(N))Γ0(N) = Sk(N, 1) is equal to Sk(N) = Sk(Γ0(N)).

1.2. Examples. – We give some basic examples following [18] Chapter VII. First, we
define the Eisenstein series. For an even integer k ≥ 4, we put

Gk(τ) =
∑

m,n∈Z,(m,n)6=(0,0)

1

(mτ + n)k
.

It is a modular form of weight k.
The q-expansion of an Eisenstein series is computed as follows. The logarithmic

derivative of sinπτ = πτ
∏∞
n=1

(
1− τ2

n2

)
gives

−2πi

(
1

2
+

∞∑
n=1

qn

)
=

1

τ
+

∞∑
n=1

(
1

τ + n
+

1

τ − n

)
.

Applying k − 1-times the operator q ddq = 1
2πi

d
dτ , one gets

∞∑
n=1

nk−1qn =
(−1)k(k − 1)!

(2πi)k

∑
n∈Z

1

(τ + n)k
.

For k ≥ 4 even, by putting σk−1(n) =
∑
d|n d

k−1 and

Ek(q) = 1 +
2

ζ(1− k)

∞∑
n=1

σk−1(n)qn ∈ Q[[q]],

we deduce
(k − 1)!

(2πi)k
Gk(τ) =

(k − 1)!

(2πi)k
(2ζ(k) + (Gk(τ)− 2ζ(k)))

= ζ(1− k) + 2

∞∑
n=1

σk−1(n)qn = ζ(1− k)Ek(q).
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