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OF MOTIVES ASSOCIATED TO SINGULAR SURFACES
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Abstract. — We first recall the construction of the Chow motive modelling intersec-
tion cohomology of a proper surface X, and study its fundamental properties. Using
Voevodsky’s category of effective geometrical motives, we then study the motive of
the exceptional divisor D in a non-singular blow-up of X. If all geometric irreducible
components of D are of genus zero, then Voevodsky’s formalism allows us to construct
certain one-extensions of motives, as canonical sub-quotients of the motive with com-
pact support of the smooth part of X. Specializing to Hilbert-Blumenthal surfaces,
we recover a motivic interpretation of a recent construction of A. Caspar.

Résumé (Motifs purs, motifs mixtes et extensions de motifs associés aux surfaces singuliéres)

On rappelle d’abord la construction du motif de Chow sous-jacent & la cohomologie
d’intersection d’une surface propre X, and l’on en étudie les propriétés fondamentales.
En utilisant le langage des motifs effectifs géométriques a la Voevodsky, on étudie
ensuite le motif du diviseur exceptionnel D dans un éclatement non-singulier de X.
Si toutes les composantes géométriques de D sont de genre zéro, alors le formalisme
de Voevodsky permet la construction de certaines extensions de motifs, comme sous-
quotients canoniques du motif & support compact de la partie lisse de X. Dans le cas
des surfaces de Hilbert-Blumenthal, ceci donne une interprétation motivique d’une
construction récente due & A. Caspar.

Introduction

The modest aim of this article is to construct non-trivial extensions in Voe’vodsky’s
category of effective geometrical motives, by studying a very special and concrete
geometric situation, namely that of a singular proper surface.

This example illustrates a much more general principle: varieties Y that are singular
(or non-proper, for that matter), can provide interesting extensions of motives. The
cohomological theories of mixed sheaves suggest where to look for these motives: the
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one should come from the open smooth part Y;ez of Y—the intersection motive of Y —
the other should be constructed out of the complement of Y,¢, in (a compactification
of) Y—the boundary motive of Y;cs. This principle (for which no originality is claimed,
since it has been part of the mathematical culture for some time) will be discussed in
more detail separately [23], in order to preserve the structure of the present article.
It is intended as a research article with a large instructional component.

The geometric object of interest is a proper surface X over an arbitrary base field k.

The first three sections contain nothing fundamentally new, except maybe for the
systematic use of Kiinneth filtrations (which are canonical) instead of Kiinneth de-
compositions (which in general are not). Section 1 reviews a special case of a result of
Borho and MacPherson [4], computing the intersection cohomology of X in terms of
the cohomology of a desingularization X. The result, predicted by the Decomposition
Theorem of 3], implies that the former is a direct factor of the latter. More precisely
(Theorem 1.1), its complement is given by the second cohomology of the exceptional
divisor D of X. As remarked already by de Cataldo and Migliorini [6], this fact can be
interpreted motivically, which allows one to construct the intersection motive Ay, (X)
of X. This is done in Section 2. We get a canonical decomposition

WX) = h(X) © @ h*(Dim)

in the category of Chow motives over k. Recall that this category is pseudo-Abelian.
The above decomposition should be considered as remarkable: to construct a sub-
motive of h(X' ) does not a priori necessitate the identification, but only the existence
of a complement. In our situation, the complement is canonical, thanks to the very
special geometrical situation. This point is reflected by the rather subtle functoriality
properties of hy, (X) (Proposition 2.5): viewed as a sub-motive of k(X), it is respected
by pull-backs, viewed as a quotient, it is respected by push-forwards under dominant
morphisms of surfaces. Section 3 is devoted to the existence and the study of the

Kiinneth filtration of hy.(X). The main ingredient is of course Murre’s construction
of Kiinneth projectors for the motive h(X) [14]. Theorem 3.8 shows how to adapt
these to our construction.

As suggested by one of the fundamental properties of intersection cohomology [3],
the intersection motive of X satisfies the Hard Lefschetz Theorem for ample line
bundles on X. We prove this result (Theorem 4.1) in Section 4. In fact, we give a
slight generalization (Variant 4.2), which will turn out to be useful for the setting we

shall study in the last section.

Section 5 is concerned with the motive of the boundary D of the desingularization
X of X. This boundary being singular in general, the right language for the study of its
motive is given by Voevodsky’s triangulated category of effective geometrical motives
[21, Chapter 5]. The section starts with a review of the definition of this category,
and of its relation to Chow motives. It is then easy to define motivic analogues of H
and H? of D, and to see that they are Chow motives. The most interesting part is
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the motivic analogue of the part of degree one H', which will be seen as a canonical
sub-quotient of the motive of D.

In Section 6, we unite what was said before, and give our main result (Theo-
rem 6.6). Assuming that all geometric irreducible components of D are of genus zero,
we construct a one-extension of the degree two-part of the intersection motive of X
by the degree one-part of the motive of D. We have no difficulty to admit that this
statement was greatly inspired by the main result of a recent article of Caspar [5].
It thus appeared appropriate to conclude this article by a discussion of his result.
This is done in Section 7, where we show that in the geometric setting considered in
[loc. cit.], Theorem 6.6 yields a motivic interpretation of Caspar’s construction.

Part of this work was done while I was enjoying a congé pour recherches ou conver-
sions thématiques, granted by the Université Paris 13, and during a visit to the Centre
de Recerca Matematica at Bellaterra-Barcelona. I am grateful to both institutions. I
also wish to thank J. Ayoub, J.-B. Bost, J.I. Burgos, M.A.A. de Cataldo, F. Déglise,
B. Kahn, K. Kiinnemann and F. Lemma for useful comments and discussions.

Notations and convention. — k denotes a fixed base field, and CH stands for the
tensor product with Q of the Chow group. The Q-linear category of Chow motives
over k is denoted by CHM(k)g. Our standard reference for Chow motives is Scholl’s
survey article [18].

1. Intersection cohomology of surfaces

In order to motivate the construction of the intersection motive, to be given in
the next section, we shall recall the computation of the intersection cohomology of a
complex surface.

Thus, throughout this section, our base field k& will be equal to C. We consider the
following situation:

xlox oz
The morphism i is a closed immersion of a sub-scheme Z, with complement j. The
scheme X* is a surface over C, all of whose singularities are contained in Z. Thus,
the surface X is smooth.

Our aim is to identify the intersection cohomology groups H/.(X*(C),Q). Note
that since X is smooth, the complex Qx[2] consisting of the constant local system
Q, placed in degree —2, can be viewed as a perverse sheaf (for the middle perversity)
on X(C) [3, Sect. 2.2.1]. Hence its intermediate extension ji.Qx[2] [3, (2.2.3.1)] is
defined as a perverse sheaf on X*(C). By definition,

HY,(X*(C),Q) = H"*(X*(C), juQx[2]), Vn € Z.

In order to identify H{.(X*(C), Q), note first that the normalization of X* is finite over
X*, and the direct image under finite morphisms is exact for the perverse t-structure
[3, Cor. 2.2.6 (i)]. Therefore, intersection cohomology is invariant under passage to

SOCIETE MATHEMATIQUE DE FRANCE



68 JORG WILDESHAUS

the normalization. In the sequel, we therefore assume X* to be normal. In particular,
its singularities are isolated.

Next, note that if X* is smooth, then the complex ji.Qx[2] equals Qx-[2]. Tran-
sitivity of ji. [3, (2.1.7.1)] shows that we may enlarge X, and hence assume that the
closed sub-scheme Z is finite.

Choose a resolution of singularities. More precisely, consider in addition the fol-
lowing diagram, assumed to be cartesian:

XCL>)?<E—3D

U T

x? o oxx_* oy

The morphism 7 is assumed proper (and birational) and the surface X , smooth. We
then have the following special case of [4, Thm. 1.7].

Theorem 1.1. — (i) For n # 2,
H[(X*(C),Q) = H"(X(C),Q).

(ii) The group HZ(X*(C),Q) is a direct factor of H*(X(C),Q), with a canonical
complement. As a sub-group, this complement is given by the map

i H o) (X(0),Q) — H(X(C),Q)

from cohomology with support in D(C); this map is injective. As a quotient, the com-
plement is given by the restriction

[ Hz()’z(c)a Q) - H2(D(C)7Q) ;
this map is surjective.

Note that this result is compatible with further blow-up of X in points belonging
to D.

Let us construct the maps between H? (X*(C), Q) and H™(X(C),Q) leading to the
above identifications. Consider the total direct image 7.Q ¢ ; following the convention
used in [3], we drop the letter “R” from our notation.

Lemma 1.2. — The complex m,Qx[2] is a perverse sheaf on X*.

Proof. — Let P be a point (of Z) over which 7 is not an isomorphism, and denote by
ip its inclusion into X*. By definition [3, Déf. 2.1.2], we need to check that (a) the
higher inverse images H"ipm, Qg vanish for n > 2, (b) the higher exceptional inverse
images H"i!PW*Q;( vanish for n < 2.

(a) By proper base change, the group in question equals H" (7~ !(P),Q). Since
7~ 1(P) is of dimension at most one, there is no cohomology above degree two.

(b) The surface X is smooth. Duality and proper base change imply that the
group in question is abstractly isomorphic to the dual of H*~"(7~1(P),Q). This
group vanishes if 4 — n is strictly larger than two. O
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