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Abstract. – In these notes we review the theory of weak solutions of the Navier-
Stokes equations for compressible flows in near equilibrium flow regime. The study
of solutions of this type was initiated by D. Hoff [11] with the motivation of studying
the dynamics of an interface of discontinuity of solutions.

We demonstrate three results. The first is the existence of weak solutions with
uniformly bounded density for the typical initial-boundary value problems. The sec-
ond result improves the regularity of such weak solutions in the case when the density
is piecewise Hölder continuous with a jump discontinuity across a C1+α hypersur-
face. We show that the flow generated by the velocity u transports the discontinuity
surface and preserve its regularity.

In the last result, we consider the fluid flows in which the density, at time t = 0,

is piecewise smooth and the interface of discontinuity is a surface with a corner-type
singularity. We show that solutions in Hoff’s regularity class are well suited for the
analysis of this problem and describe the phenomenon of an instantaneous change of
the geometry of the interface at the point of the singularity.

1. Properties of the solutions at the interface of discontinuity

1.1. Equations. – The Navier-Stokes equations for isentropic flows express the con-
servation of mass and momentum:

(N.-S.)

{
∂tρ+ div (ρu) = 0,

∂t(ρu
j) + div (ρuju) = µ∆uj + λ div uxj − P (ρ)xj , j = 1..n,

where (x, t) ∈ Ω × R+, Ω is an open subset of Rn, n = 2, 3; ρ and u = (u1, .., un)

are the unknown functions of x and t representing the density and the velocity;
P = κργ , γ ≥ 1, κ > 0, is the isentropic pressure; µ and λ are the viscosity coef-
ficients, verifying

(1.1) µ > 0, λ− µ/3 ≥ 0.
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The system (N.-S.) is solved subject to the initial conditions

(1.2) (ρ(·, 0), u(·, 0)) = (ρ0(·), u0(·))

and one of the following boundary conditions.
Flows in Rn : Ω = Rn, and for any t ≥ 0, and |x| → +∞,

(1.3) (ρ(x, t), u(x, t))→ (ρ̄, 0),

for some ρ̄ > 0. No-slip boundary conditions: for any (x, t) ∈ ∂Ω× R+,

(1.4) u(x, t) = 0.

Navier boundary conditions: for any (x, t) ∈ ∂Ω× R+ and n = n(x) – the unit outer
normal,

(1.5) u · n = 0, ((∇u+∇ut)n+Ku)tan = 0, K ≥ 0,

where vtan = v − n(v · n) is the component of vector v tangent to the boundary. The
last condition is typically imposed on the common boundary between a fluid flow and
a porous media. A non-negative coefficient K describes the porous material, see for
example Beavers-Joseph [1]. The case K = 0 corresponds to a perfectly lubricated
boundary, Joseph [18]. We will assume in this notes that K is a constant.

1.2. Rankine-Hugoniot conditions. – In these notes we focus on discontinuous solu-
tions of the Navier-Stokes equations. We start by considering the Rankine-Hugoniot
conditions at the surface of the jump discontinuity of a weak solution (ρ, u). The
following analysis can be found in Hoff [10] and Serre [24].

Let S be a smooth hypersurface in Rn+1 and n be the normal to S, with space
and time components nx and nt, and |nx| = 1. Let O be an open subset of Rn+1,

such that S divides O into two disjoint open sets O±. Let (ρ, u) be a weak solution
of Equations (N.-S.) in O with piece-wise smooth structure:

ρ ∈ C1,1
x,t (O

±), u ∈ C2,1
x,t (O

±).

We denote by [[f ]](z) = f+(z) − f−(z), z = (x, t) ∈ S, – the jump of function f

across S at z. We assume that on S, [[ρ]] > 0 and [[u]] = 0. The later condition holds
since we expect u to be continuous, due to the presence of viscosity in the momentum
equation.

If we denote by St = {x : (x, t) ∈ S} the section of S by a plane t = const., then,
from the continuity of u we conclude that [[∇u]]τ = 0, for every τ in the tangent plane
to St at x ∈ St. Since St is n−1 dimensional, [[∇u]] is a rank-1 matrix: there is a ∈ Rn
such that

(1.6) [[∇u]] = antx,

where ntx stands for the transpose of the column vector nx. The Rankine-Hugoniot
condition for the balance of mass equation is expressed as

(1.7) nt + u · nx = 0,
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meaning that velocity (u(z), 1) lies in the tangent plane to S at z. This implies that
if Xt(x, s) is a flow trajectory, i.e., the solution of the problem

(1.8)
dXt

dt
= u(Xt, t), (Xs(x, s), s) ∈ S ∩O,

for some fixed s ∈ R, then (Xt(x, s), t) ∈ S for all times t while it remains in O. Thus,
the interface of jump discontinuities St is transported by the flow.

The right-hand side of the momentum equation in (N.-S.) can be expressed as div S,
where S is the Stokes stress tensor:

S = µ(∇u+∇ut) + ((λ− µ)div u− P )I.

Due to (1.7), the Rankine-Hugoniot conditions for the momentum equations are ex-
pressed as the continuity of the normal stress:

[[S]]nx = 0.

Using the expression for the jump of ∇u from (1.6), we obtain the equation

µa+ µ(a · nx)nx + [[(λ− µ)div u− P ]]nx = 0,

which implies that a = Anx for A = − 1
2µ [[(λ − µ)div u − P ]] and from this we get

[[∇u]] = Anxn
t
x. Taking the trace in the last expression we find that

(1.9) [[(λ+ µ)div u− P ]] = 0,

and the formula for the jump of ∇u :

[[∇u]] =
[[P ]]

λ+ µ
nxn

t
x.

Note, that the last formula shows that [[∇u]] is symmetric, meaning that

[[ curlu]] = 0.

Condition (1.9) is the first hint to a special role played by the function F = (λ +

µ)div u − P, called the viscous flux. It has some extra regularity, compared to the
regularity of ∇u and ρ.

We use (1.9) in the balance of mass equation ∂t ln ρ+ u · ∇ ln ρ+ divu = 0 to find
that

˙[[ln ρ]] +
1

λ+ µ
[[P ]] = 0, ˙ = ∂t + u · ∇,

due to the fact that S consists of the trajectories of the flow. For a typical pressure
law P = κργ , γ ≥ 1, there are C, c > 0, depending on supx,t ρ and infx,t ρ > 0, such
that c[[ln ρ]] ≤ [[P ]] ≤ C[[ln ρ]], and from the above equation we deduce bounds for the
decay of [[ρ]] :

[[ln ρ]](x, s)e−
C
λ+µ (t−s) ≤ [[ln ρ]](Xt(x, s), t) ≤ [[ln ρ]](x, s)e−

c
λ+µ (t−s).
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1.3. Flows with integrable inertia force. – The structure of surface S, discussed above,
implies that the jump of the material acceleration [[u̇]] = 0. Since ∇u is discontinuous
at S, with the jump given by (1.2), we expect u̇ to be more regular than the derivatives
in (x, t). This statement can be formalized by means of the energy estimates obtained
by considering the convective derivative of the momentum equations, see Section 3.2.
As we will see in that section, the energy estimates and the Sobolev imbedding theo-
rem ensure that for any time t > 0 the inertia term is integrable with sufficiently high
exponent:

(1.10) ρu̇(·, t) ∈ Lp(Ω),

for some p > n. To obtain the information on ∇u, we consider the momentum
equations as Lamé’s equations for u:

(1.11) λ∇div u+ µ∆u = ∇P + ρu̇,

and we also assume that u(·, t), ∇u(·, t) ∈ L2(Ω), P (ρ(·, t)) ∈ L∞(Ω).

1.3.1. Interior regularity. – Setting F = (λ+µ)div u−P, and taking divergence and
curl of (1.11), we find that

∆F = div (ρu̇), ∆ curlu = curl (ρu̇).

Since F (·, t), curlu(·, t) ∈ L2(Ω), ρu̇(·, t) ∈ Lp(Ω), p > n, by the elliptic regularity
and Sobolev’s imbedding inequality, we get

∇F (·, t), ∇ curlu(·, t) ∈ Lploc(Ω), F (·, t), curlu(·, t) ∈ Cαloc(Ω), α = 1− n/p.

This, in particular, shows that div u(·, t) is in L∞loc(Ω). To get the information on other
derivatives of u, we write Equations (1.11) as Poisson’s equations

µ∆u =
µ

λ+ µ
∇P − λ

λ+ µ
∇F + ρu̇,

and using Γ(x, y) – the fundamental solution of the Laplace equation on Rn, we can
write

(1.12) u(x, t) =
1

λ+ µ

∫
Br(x0)

∇xΓ(x, y)P (y, t) dy +R(x, t),

for an arbitrary ball Br(x0) ⊂ Ω and the remainder term R(·, t) ∈ C1+α
loc (Ω).

From (1.12) we can find that u(x, t) is log-Lipschitz continuous in x:

sup
x 6=y

|u(x, t)− u(y, t)|
|x− y| log+ |x− y|

< +∞,

with log+ r = log(1 + r−1).

This estimate is sharp. In dimension 2, if ρ(x, t) is piecewise Cα in x with jump
discontinuity across a piecewise C1+α curve that has a corner singularity at x0 of the
angle θ0 6= {0, π/2, π}, for points x near x0, |∇u(x, t)| is of the order log+ |x− x0|.
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