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1. Introduction

Professor A.V. Kazhikhov was one of the very distinguished analysts of our time.
He made fundamental contributions on the mathematical theory of fluid mechanics, in
particular he achieved outstanding results on the compressible Navier-Stokes system
that, had, and still have, a significant influence on this field.

This special issue of Panoramas et Synthèses (SMF), dedicated to the memory of
the Professor A.V. Kazhikhov, consists of three mathematical contributions dealing
with compressible flows PDEs. They correspond to mini-courses respectively given by
R. Danchin, A. Novtony, M. Perepetlisa with a constant or non-degenerate viscosities
assumption. A contribution with degenerate viscosities (depending on the density)
was presented by B. Desjardins during the session États de la Recherche but is not
included in the volume because it does not really belongs to the same framework.

The main objective of this issue is to help the reader understand various math-
ematical tools that have been developed recently to deal with the problem of well
posedness for the compressible Navier-Stokes equations with constant or at least non-
degenerate viscosities. The three contributions focus on different kind of solutions,
namely:

– Global weak solutions (regularity given by the energy estimates),
– Intermediate but not regular (discontinuous density and velocity with (low)

regularity),
– Scaling invariant strong solutions (critical regularity).

In order to prepare the reader to these three main contributions, let us present in the
following section different tools and main ingredients used by the authors. We hope
by this section to motivate and help the reader start reading the contributions by
showing them nice properties contained in the compressible Navier-Stokes equations.
We start with the contribution by A. Novotny because it corresponds to the weakest
regularity. We then continue with the contribution by M. Perepetlisa which concerns
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intermediate regularity, namely discontinuous density. Then we end the issue with
the contribution by R. Danchin which focuses on critical spaces regularity. For each
contributions, we will present some properties which are included in some sense in
the contributions and mathematically justified in a more general setting sometimes.

Interested readers are invited to read the extensive exposition which can be found in
the monographs by P.-L. Lions, E. Feireisl, A. Novotny and I. Straskraba, S. Benzoni
and D. Serre, H.Bahouri, J.-Y. Chemin and R. Danchin and papers by D. Hoff et al.

2. Some comments on the contributions

The contribution by A. Novotny. – It concerns the existence of global weak solutions
for the compressible Navier-Stokes-Fourier system in the spirit of the result obtai-
ned in 1933 by J. Leray for the incompressible Navier-Stokes equations, the existence
of suitable weak solutions using the concept of relative entropies, the weak strong
uniqueness property in the class of weak solutions. The main ingredients are energy
estimates, weak limit, compactness of the temperature, div-curl Lemma, parametrized
Young measures, effective flux, commutators, oscillations defect measure and renor-
malized continuity equation, relative entropy type inequality, weak-strong uniqueness
techniques.

Global existence of weak solutions à la Leray. – Concerning the global in time exis-
tence result for the heat conducting Navier-Stokes equations, viscosities and condu-
ctivity coefficients are assumed to depend on the temperature (not on the density)
and to be non-degenerate. In the barotropic case, namely in the non-dependent tem-
perature case, viscosities are assumed to be constant and isotropic (same viscosities
in all the directions: no eddy viscosities): see the book by P.-L. Lions and the one by
A. Novotny and I. Strakraba. Extending the result to constant eddy viscosities is an
interesting open problem with applications in geophysics.

For the heat conducting Navier-Stokes equations, dependency with respect to the
temperature is possible because of the parabolic behavior of the equation satisfied by
the temperature. Isotropy of the viscosities is necessary to get the weak compacness
property on the effective flux F = (2µ+λ)divu−p. The regularity on the temperature
helps to control commutators.

The form of the pressure is also strongly used to derive estimates on the density
and find weak limit properties: the pressure is composed of two parts (a cold part
which does not depend on the temperature but depends on the density and a part
which depends on the density and on the temperature). It remains then to characterize
weak limit of some difficult nonlinear terms: mainly the weak limit of the pressure
term, viscous term. For that the authors show strong convergence of temperature.
This point involves the treatment of the entropy production rate as a Radon measure
and a convenient use of the compensated compactness lemma in combination with the
theory of parametrized Young measures. Then it is needed to get strong convergence
of densities. As for the barotropic case, weak compactness on the effective viscous flux
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is the key point and established using Riesz transform, commutators estimates à la
Meyer through div-curl Lemma, boundedness of the oscillation defect measure for the
sequence of densities, renormalized solution to the continuity equation and show the
oscillations in the density sequence do not increase in time.

Some heuristic calculations. – For the reader’s convenience, let us explain heuristi-
cally the main steps to prove global existence of weak solutions in the barotropic
case with constant viscosities and power γ pressure law. This will help in order to
understand the Navier-Stokes-Fourier analysis in the contribution by A. Novtony. In
that case, the compressible Navier-Stokes equation with constant viscosities reads

(1)

{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+∇p(ρ) = ρf,

with p(ρ) = aργ . For simplicity, we assume to be in a Lipschitz bounded domain Ω with
homogeneous Dirichlet boundary conditions on the velocity. When ρ and u are regular
and satisfied the continuity equation, for all b ∈ C([0,+∞)), it is clear, multiplying
the mas equation by b′(ρ), that (ρ, u) satisfy also the renormalized continuity equation
(this terminology coming from the transport theory by R.J. DiPerna and P.-L. Lions).
This equation reads

∂tb(ρ) + div(b(ρ)u) + (b′(ρ)ρ− b(ρ))divu = 0.

For T ∈ (0,+∞), f , ρ0, m0 satisfying some technical assumptions, we say that a
couple (ρ, u) is a weak renormalized solution with bounded energy if it possesses the
following properties:

– ρ ∈ L∞(0, T ;Lγ(Ω)) ∩ C0([0, T ], Lγweak(Ω)), ρ ≥ 0 a.e. in (0, T )× Ω, ρ|t=0 = ρ0

a.e. in Ω,
– u ∈ L2(0, T ;H1

0 (Ω)); ρ|u|2 ∈ L∞(0, T ;L1(Ω)) and ρu ∈ C0([0, T ];L
2γ/(γ+1)
weak (Ω)),

(ρu)|t=0 = m0 a.e. Ω;
– the solution extended by zero is solution of the mass and momentum equations

in D′((0, T )×Rd);
– for almost all τ ∈ (0, T ), (ρ, u) satisfies the energy inequality

E(ρ, u)(τ) +

∫ τ

0

∫
Ω

(µ|∇u|2 + (λ+ µ)|divu|2) ≤ E0 +

∫ t

0

∫
Ω

ρf · u

In this inequality, E(ρ, u)(τ) =
∫

Ω
(ρ|u|2/2 + aργ/(γ − 1))(τ) denotes the total

energy at time τ and E0 =
∫

Ω
|m0|2/2ρ0 + aργ0/(γ− 1)) denotes the initial total

energy;
– b(ρ) satisfies the renormalized equation for b with some increasing properties.

The theory developed by P.-L. Lions to prove the global existence of renormalized
weak solution with bounded energy asks for some limitation on the adiabatic constant
γ, namely γ > 3d/(d+ 2). Note that E. Feireisl et al. have generalized this approach
in order to cover the range γ > 3/2 in dimension 3 and more generally γ > d/2

where d is the space dimension. We will try here to help the readers to understand
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the different lines of the proof in the “simplest” case, namely the one studied by
P.-L. Lions. As usual in PDEs, the method asks for the compactness of a bounded
sequence of solutions satisfying uniformly the energy estimates. The construction of
such an approximate sequence is not the subject of this heuristic part (see the book
by A. Novotny and I. Straskraba for details).

We present the proof due to P.-L. Lions and indicate quickly at the end how it was
improved by E. Feireisl et al.. Let us note that using some appropriate multiplicator,
for γ > d/2, it is possible to prove the following key estimate on the density∫ ∞

0

dt

∫
Ω

ργ+θ ≤ C(R, T ) for θ =
2

d
γ − 1.

This observation is due to P.-L. Lions. To prove such an estimate, we need the fact
that (ρn, un) is a sequence solution of the renormalized equation in which b(s) = sθ.
Let us observe also that the regularity asked for the domain is linked to the use of
the Bogovski operator as proposed by E. Feireisl et al. Using the energy estimate and
the extra integrability property proved on the density, it is is then possible to precise
some convergence and to show that

ρn → ρ in C0([0, T ];Lγweak(Ω))

ργn → ργ in L(γ+θ)/γ((0, T )× Ω)

ρnun → ρu in C0([0, T ];L2γ/(γ+1)(Ω))

ρuinu
j
n → ρuuj in D′((0, T )× Ω) for i, j = 1, 2, 3.

Let us note the convergence in some nonlinear terms which comes from the strong
convergence of ρn deduced from the uniform estimate on ∂tρn given by the mass
equation and of the strong convergence of √ρnun deduced form the uniform estimate
on ∂t(ρnun) given by the momentum equation (which provides strong convergence in
negative sobolev spaces) and by the convergence of the term

∫ T
0

∫
Ω
ρn|un|2 writting∫ T

0

∫
Ω
ρn|un|2 =

∫ T
0
<ρnun, un>H−1(Ω)×H1

0 (Ω). Consequently, the prolongation by zero
in (0, T )×R3/Ω of the functions ρ, u, ργ denoted again ρ, u, ργ satisfy the equations

(2)

{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− µ∆u− (λ+ µ)∇divu+ a∇ργ = ρf.

The difficulty consists in proving that (ρ, u) is a renormalized weak solution with
bounded energy and is mainly linked to the proof that ργ = ργ a.e. in ((0, T ) × Ω.
This asks for a kind of compactness on the density sequence which is not available
from the estimates only. This is an observation by P.-L. Lions which will fill the gap:
The sequence {aργn−λ+ 2µdivun}n∈N∗ , usually called viscous effective flux possesses
a kind of weak compactness. This property was previously identified in one space
dimension by D. Hoff and D. Serre. More precisely, we have the following property
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for all function b ∈ C1([0,+∞)) satisfying some increasing properties at infinity

lim
n→+∞

∫ T

0

∫
Ω

(aργn−(2µ+λ)divun)b(ρn)ϕdxdt =

∫ T

0

∫
Ω

(aργ−(2µ+λ)divu)b(ρ)ϕdxdt

where the overline quantities design the weak limit of the corresponding quantities and
ϕ ∈ D((0, T )×Ω). In higher dimension, the proof by P.-L. Lions is based on harmonic
analysis due to R. Coifman and Y. Meyer and takes into account the observations by
D. Serre made in the one-dimensional case. The proof by E. Feireisl is based on div-
curl Lemma introduced by F. Murat and L Tartar. Let us explain how P.-L. Lions
concluded about the strong convergence on the density sequences using this weak
compactness property on the effective flux. To simplify the computations, we will
assume γ ≥ 3d/(d+ 2) and in that case due to the extra integrability on the density,
we get that ρn ∈ L2((0, T ) × Ω). In that case, the transport theory by R.J. DiPerna
and P.-L. Lions applies to the continuity equation in order to get the validity of the
renormalized equations. Then choose b(s) = s ln s in the renormalized formulation for
ρn and ρ and do the difference of the two equations. Then pass to the limit n→ +∞
and use the identity of weak compactness on the effective flux to replace terms with
divergence of velocity by terms with density. This allows to get an evolution equation
on the amplitude of the oscillation for the sequence of density. It reads

∂t(ρ ln ρ− ρ ln ρ) + div((ρ ln ρ− ρ ln ρ)u) =
a

2µ+ λ
(ργρ− ργ+1).

The formal integration of this equation on (0, T )×Ω, the monotonicity of the pressure
p(ρ) = aργ and the strict-convexity of the function s 7→ s ln s, s ≥ 0 implies that
ρ ln ρ = ρ ln ρ if initially it is the case. In other terms, the weak convergence commute
with a strictly convex function and therefore it gives the strong convergence of the
densities. This achieves the proof of the Theorem in the case γ ≥ 3d/(d + 2). The
proof of E. Feireisl works even if the density is not a priori square integrable. For
that E. Feireisl observes that it is possible to control the amplitude of the possible
oscillations on the density in a norm Lp with p > 2 allowing to use an effective flux
property with some troncature. The existence result is then also valid for γ > d/2:
See the book by A. Novotny and I. Straskraba. For the heat conducting Navier-Stokes
equations, the tools are more complicated but the steps endowed in the barotropic
case are included in: Estimates and weak limits (step 1, step 4, step 5, step 6), Strong
convergence of densities (Section 3) of course with not straightforward adaptations.

Remark. – If we have oscillation-concentration on the initial density sequence, the
result is more complex because ρ0 ln ρ0 6= ρ0 ln ρ0. We refer the reader to the recent
paper by D. Bresch and M. Hillairet (2013) where they justify the derivation of vis-
cous and compressible multi-component flow equations if initially the initial density
sequence is uniformly bounded with corresponding Young measures which are linear
convex combination of m Dirac measures.

Relative entropy and suitable weak solutions. – Since the pioneering work of C. Da-
fermos, relative entropy methods have become a crucial and widely used tool in the
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