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KNOTS, FLOWS, AND FLUIDS
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Abstract. — This paper is organized along three directions which are strongly inter-
connected. The first one is a review of topological invariants associated with flows in
3 dimensional manifolds. These invariants are related to averaged asymptotic linking
properties of orbits. The second one is the study of the space of configurations of an
incompressible fluid on an oriented manifold. This space can be parametrized by the
group of diffeomorphisms isotopic to the identity which preserve a given volume form.
This group can be equipped with a natural right invariant metric that we analyse
both from the global point of view (diameter of the group) and the geodesic one.
Extensions to the case of groups of diffeomorphisms preserving a given symplectic
form are also reviewed. A particular attention is paid to the case when the dimension
is 2 where both points of view coincide. In the third part, we study the structure of
the group of diffeomorphisms on a compact oriented surface which are isotopic to the
identity and preserve a given area form. According to the genus of the surface, we
describe the subgroup generated by the commutators and show that on this subgroup

the commutator length is unbounded, a result obtained in collaboration with Étienne
Ghys.

Résumé(Nœuds, Flots, et Fluides). —Cet article s’organise autour de trois directions
fortement corrélées. La première donne une description de divers invariants topolo-
giques associés à un flot préservant le volume sur une variété de dimension 3. Ces
invariants sont reliés aux propriétés d’enlacement moyen asymptotique des orbites. La
deuxième direction concerne l’étude de l’espace des configurations d’un fluide incom-
pressible sur une variété orientée. Cet espace peut être paramétré par le groupe des
difféomorphismes isotopes à l’identité, préservant une forme volume. Ce groupe est
équipé d’une métrique naturelle invariante à droite que l’on étudie tant du point de
vue global (diamètre du groupe) que du point de vue géodésique. Le cas des groupes
de difféomorphismes préservant une forme symplectique est également abordé en sui-
vant une même approche. Une attention toute particulière est portée au cas de la
dimension 2 où les deux points de vue se rejoignent. Dans une troisième direction, on
étudie la structure du groupe des difféomorphismes isotopes à l’identité et préservant
une forme d’aire sur les surfaces compactes orientées. Selon le genre de la surface, on
décrit le sous-groupe des commutateurs et on montre sur ce sous-groupe que la fonc-
tion longueur des commutateurs n’est pas bornée, un résultat obtenu en collaboration

avec Étienne Ghys.
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1. Introduction

1.1. Gone with the wind. — In the year 1858, Herman Ludwig Ferdinand von
Helmholtz published in Crelle’s Journal [32] a deep and pioneering paper on vor-
tex motions, entitled “Über Integrale der hydrodynamischen Gleichungen, welche den

Wirbelbewegungen entsprechen”.
This work concerns the motion of an ideal fluid moving in a domain D3 of the

3-dimensional Euclidean space R3. The basic observation made by Helmoltz is that,
at a given time t, the infinitesimal motion of a volume element of the fluid can be
decomposed in the sum of a translation, a pure straining motion, and a rigid body
rotation. The axis of this infinitesimal rigid body rotation at each point x in D3

defines a line field in D3, whose integral curves are called vortex lines.
In a more mathematical language, if we denote by u(x, t) the velocity of a fluid

particle located at x in D3, at time t, the infinitesimal variation of the velocity of the
fluid at x reads:

dxu = E + Ω

where E is a symmetric tensor which represents the infinitesimal pure straining mo-
tion, and Ω is an anti-symmetric tensor which represents the infinitesimal rotation.
The vorticity vector ω(x, t) = curlu(x, t) at x in D3 and at time t, is parallel to the
axis of the infinitesimal rotation Ω(x, t). At each time t, vortex lines are thus orbits of
the vorticity vector field. Notice that from its very definition, the vorticity vector field
is solenoidal, i.e. it is divergence free or equivalently its flow preserves the standard
volume form in D3.

Let D be the closed ball with radius 1 centered at 0 in R
2, ∂D its border and I

the closed interval [0, 1]. Consider an embedding E : D × I → D3 such that:

– for all c in I, the image of D × {c} is a disk transverse to the vortex lines;
– for all x in D, the image of {x} × I belongs to a vortex line.

The image of the cylinder ∂D × I by such an embedding is called a vortex tube.
Let C be a closed oriented curve on ∂D × I homotopic to ∂D × {c}, where ∂D is

equipped with its standard orientation and c is any point in I. The strength of the
vortex tube E(∂D × I) is the circulation along the curve E(C):

∮

E(C)

u . ds

As noticed by Helmoltz (it can be seen as a simple application of Stokes theorem) the
strength of a vortex tube does not depend on the choice of the curve C and is equal to
the flow of the vorticity field through the embedded disk E(D × {c}), for any c in I.

Helmoltz aim was to describe the time evolution of vortex lines and tubes along a
fluid motion. In the case of an ideal barotropic fluid under the action of conservative
external body forces (we will recall in a while what this means from our mathematical
point of view), he derived the following three laws:

Under time evolution,

(I) Fluid particles originally free of vorticity remain free of vorticity;

(II) Vortex lines and tubes remain vortex lines and tubes;
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Figure 1. A vortex tube

(III) The strength of a vortex tube remains unchanged.

Observing the time evolution equations associated with the fluid motion gives an
insight of the proof of these laws. Let ρ be the density of the fluid, u its velocity, and
F the external force per unit mass. When the fluid is ideal, Euler equations describe
conservation of mass and momentum:

(1)
∂ρ

∂t
+ u .∇ρ+ ρ div u = 0

and

(2)
∂u

∂t
+ (u .∇)u = −

(1

ρ

)

∇p+ F,

where p is the pressure (the cohesion force of the fluid).
Applying curl operator to Equation (2) yields the general time evolution equation

for vorticity:

(3)
∂ω

∂t
+ u .∇ω = ω .∇u− ω div u+

( 1

ρ2

)

∇ρ ∧∇p+ curlF.

The fluid is said barotropic when the surfaces of constant pressure are parallel to the
surfaces of constant density: in this case the term ∇ρ ∧ ∇p vanishes. Whenever the
external body force is conservative the term curlF also vanishes and Equation (3)
reduces to:

(4)
∂ω

∂t
+ (u .∇)ω = (ω .∇)u− ω div u.

Combining with Equation (1) we get:

(5)
∂

∂t

ω

ρ
+ (u .∇)

ω

ρ
−

(ω

ρ
.∇

)

u = 0,

which also reads:

(6)
∂

∂t

ω

ρ
+

[

u,
ω

ρ

]

= 0,

where [., .] stands for the Lie bracket.
Equation (6) has a very nice geometrical meaning: it says that the pondered vortic-

ity vector field ω/ρ is frozen in the velocity vector field. More precisely, given a time t
and a positive real number τ , consider the map Φτ t : D3 → D3 which, to any position
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Figure 2. Smoke rings parade

x in D3, associates the position at time t+ τ of the particle that was in x at time t.
Assume furthermore that this map is smooth, invertible and with a smooth inverse.
Equation (6) implies that Φτ t realizes a conjugacy between the vorticity fields at time
t and time t+ τ :

ω

ρ
(., t+ τ) = Φτ t

?
(ω

ρ
(., t)

)

or more explicitly

ω

ρ
(Φτ t(x), t+ τ) = dxΦ

τ
t

(ω

ρ
(x, t)

)

∀x ∈ D3.

Laws (I), (II) and (III) turn to be direct consequences of this conjugacy relation.
A particularly elegant illustration of Helmoltz laws concerns vortex rings. A vortex

ring is an embedded 2-torus in D3 tangent to the vorticity vector field and which is
the boundary of an embedded solid torus. Under time evolution vortex rings remain
vortex rings even if deformed, and particles which are inside a vortex ring at some
time t cannot escape from the ring as time goes.

In his paper, Helmoltz went further than the topological approach we described
above and analyzed time evolution of a pair of neighbor vortex rings in a fluid. His
conclusions read as follows:

“If they both have the same direction of rotation they will proceed in the same

sense, and the ring in front will enlarge itself and move slower, while the second

one will shrink and move faster, if the velocities of translation are not too dif-

ferent, the second will finally reach the first and pass through it. Then the same

game will be repeated with the other ring, so the ring will pass alternately one

through the other.”

This profound paper by Helmoltz was not too paid attention to when published.
It had to wait until the English translation by Peter Guthrie Tait in 1867. On top
of his translation work, Tait imagined and realized a physical experiment showing
the exactness of the theoretical conclusions by Helmoltz on the dynamics of pairs of
vortex rings.

Tait’s idea was to encapsulate smoke in a vortex ring for visualization. The smoke
rings persist a long time after they had been created (as long as dissipative effects in
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Figure 3. Tait’s machine

the atmospheric air motion do not destroy the pertinence of Euler equations). Let us
follow the careful description by Thomson [52] of Tait’s machine:

“A large rectangular box, open at one side, has a circular hole of 6 or 8 inches

diameter cut in the opposite side. A common rough packing-box of 2 feet cube, or

thereabout, will answer the purpose very well. The open side of the box is closed

by a stout towel or piece of cloth, or by a sheet of india-rubber stretched across

it. A blow on this flexible side causes a circular vortex ring to shoot out from

the hole on the other side. The vortex rings thus generated are visible if the box

is filled with smoke. One of the most convenient ways of doing this is to use two

retorts with their necks thrust into holes made for the purpose in one of the sides

of the box. A small quantity of muriatic acid is put into one of these retorts,

and of strong liquid ammonia into the other. By a spirit-lamp applied from time

to time to one or the other of these retorts, a thick cloud of sal-ammoniac is

readily maintained in the inside of the box. A curious and interesting experiment

may be made with two boxes thus arranged, and placed either side by side close

to one another or facing one another so as to project smoke-rings meeting from

opposite directions – or in various relative positions, so as to give smoke-rings

proceeding in paths inclined to one another at any angle, and passing one another

at various distances. An interesting variation of the experiment may be made

by using clear air without smoke in one of the boxes. The invisible vortex rings

projected from it render their existence startingly sensible when they come near

any of the smoke-rings proceeding from the other box.”

Thomson soon realized the analogy between fluid dynamics and electromag-
netism(1). Recall that at that time, Maxwell equations were dominating physics,
electromagnetic waves were thought to be vibrations in the “luminiferous ether”,
and atoms were still mysterious unidentified objects. This led Thomson to propose
a theory where atoms were knotted vortices rings in the ether. Thomson’s ideas
turned to be completely wrong but his enthusiasm had a very deep impact on the
development of mathematics. He encouraged Tait to settle down the basis of what
is now called knot theory [49, 50, 51]. Tait started trying to list knots according to
their numbers of double points when projected to a plane in a most efficient way and

(1)See the second paragraph in this Section.
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